You are here
Award Data
The Award database is continually updated throughout the year. As a result, data for FY23 is not expected to be complete until September, 2024.
Download all SBIR.gov award data either with award abstracts (290MB)
or without award abstracts (65MB).
A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.
The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.
-
Multi-scale Physics-Based Models for alpha-betaTitanium Alloys Accounting for Higher-Order Microstructure Statistics.
SBC: MRL MATERIALS RESOURCES LLC Topic: AF09BT29Modern military and civilian aircraft technologies are pushing the performance envelope through design and use of new advanced materials with superior property combinations. Aircraft powerplant manufacturers are facing intense competition to efficiently deliver ever increasing thrust, while meeting the highest standards of reliability and performance over an expanded service life. These performanc ...
STTR Phase I 2010 Department of DefenseAir Force -
Theoretical Innovations in Combustion Stability Research: Integrated Analysis and Computation
SBC: Kassoy Innovative Science Solutions Topic: AF09BT38Quantitative predictions of reactive flow dynamics from large-scale simulations of Liquid Rocket Engines (LRE) appear to be model dependent. Relationships and coupling among the dominant mechanisms most responsible for destabilization are obscured by the complexities of the model and subtle consequences of inherent ad hoc approximations not supported by mathematical rationale. The reliability of ...
STTR Phase I 2010 Department of DefenseAir Force -
Advanced Materials for the Design of Lightweight JP5/JP8/DS2 Fueled Engines for Unmanned Aerial Vehicles (UAVs)
SBC: Northwest Uld, Inc. Topic: N10AT001Northwest UAV Propulsion Systems proposes using our purpose built heavy fuel engine designed and built in the USA for small unmanned aerial systems in the tier 2 & 3 class. We will be adding a lightweight ceramic material set combined with FEA (Finite Element Analysis) and heavy fuel atomizer (IRAD Project) to create a lightweight engine for a SUAS or STUAS class UAVs. The Ceramic material set is ...
STTR Phase I 2010 Department of DefenseNavy -
Metal-blacks for plasmonic enhancement of solar-cell efficiency
SBC: Physical Engineering Corporation Topic: AF09BT39This Phase I STTR proposal will demonstrate nanostructured “metal-black” coatings to enhance absorption by thin film solar cells. The problem is that silicon has low absorption due to its indirect gap. The opportunity is that nano-scale metallic scattering centers increase the effective optical path length and enhance the solar electric-field strength in thin-film solar cells, leading to more ...
STTR Phase I 2010 Department of DefenseAir Force -
Modeling Leadership Dynamics in Multinational Environments
SBC: MacroCognition, LLC Topic: ST092002We propose to develop a computational model of leadership designed to capture complex variables including cultural differences in leadership requirements along with task differences, primarily ill-defined goals, which pose leadership challenges. Rather than avoiding these kinds of complexity and developing a computational model that is unlikely to scale up, we believe there is more to be gained b ...
STTR Phase I 2010 Department of DefenseDefense Advanced Research Projects Agency -
STTR Phase I: Cost Effective Core-Shell Nanocatalysts for PEM Fuel Cells
SBC: BETTERGY CORP. Topic: MMThis SBIR Phase I project will develop proton exchange membrane (PEM) fuel cells as a power source for automobiles and stationary or portable power applications. Currently, the high cost of the PEM fuel cell limits their commercial applications. A significant cost of a PEM fuel cell comes from the use of Platinum. This project intends to develop a low cost core shell nanostructured catalyst whic ...
STTR Phase I 2010 National Science Foundation -
Wide Bandgap Nanostructured Space Photovoltaics
SBC: Firefly Technologies Topic: T3Firefly, in collaboration with Rochester Institute of Technology, proposes an STTR program for the development of a wide-bandgap GaP-based space solar cell capable of efficient operation at temperatures above 300oC. Efficiency enhancement will be achieved by the introduction of InGaP quantum wells within the active region of the wide-gap base material. The introduction of these nanoscale features ...
STTR Phase I 2010 National Aeronautics and Space Administration -
Nanowire Photovoltaic Devices
SBC: Firefly Technologies Topic: T3Firefly, in collaboration with Rochester Institute of Technology, proposes an STTR program for the development of a space solar cell having record efficiency exceeding 40% (AM0) by the introduction of nanowires within the active region of the current limiting sub-cell. The introduction of these nanoscale features will enable realization of an intermediate band solar cell (IBSC), while simultaneous ...
STTR Phase I 2010 National Aeronautics and Space Administration -
Recovery Act- Large-Scale SWNT Purification and Solubilization
SBC: Tetragchem, Llc Topic: 09bThe unique properties of Single-Walled Carbon Nanotubes (SWNTs) including exceptional mechanical strength, electron mobility and nanoscale dimensions make them excellent candidates for use in wide-ranging applications including polymer additives, transparent conductive films, nanoelectronics, sensing, nano-optics, transistors, filters, hydrogen storage, drug and gene delivery, oscillators, field e ...
STTR Phase I 2010 Department of Energy -
STTR Phase I: Low Cost, High Efficiency Photovoltaics
SBC: Ampulse Corporation Topic: MMThis Small Business Technology Transfer (STTR) Phase I project aims to develop roll-to-roll processing of highly efficient, thin film photovoltaics on inexpensive polycrystalline substrates. The innovation lies in an architecture that yields near-single-crystalline thin films even on polycrystalline substrates. This innovation will be combined with the benefits of hot wire chemical vapor deposit ...
STTR Phase I 2010 National Science Foundation