You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Graded-Composition Refractory Coatings for Protection of Cu-Rails for Electromagnetic Launchers

    SBC: Engineered Coatings, Inc.            Topic: N10AT025

    The Navy is developing an electromagnetic (EM) launcher for long-range naval surface-fire-support. Severe operating conditions of the EM system place stringent requirements for materials, including high current and magnetic fields, high temperatures, contact with liquid metals, high stress/gouging from balloting contacts and high-speed-sliding electrical-contact with an Al armature. Engineered Coa ...

    STTR Phase I 2010 Department of DefenseNavy
  2. Mathematically Rigorous Methods for Determining Software Quality

    SBC: GRAMMATECH INC            Topic: N10AT035

    Software is rarely written entirely from scratch. Typically, third-party commercial off-the-shelf (COTS) components are integrated into larger software systems used both in the commercial sector and in critical infrastructure. Third-party components often come in binary form, e.g., as dynamically linked libraries, Active X controls, or plain executables. That is, the source code for those componen ...

    STTR Phase I 2010 Department of DefenseNavy
  3. An Advanced Undersea Lithium Ion Management System (U-LIMS)

    SBC: Impact Technologies            Topic: N10AT013

    Impact Technologies, in collaboration with Penn State Applied Research Laboratory, proposes to develop an advanced Battery Monitoring and Management System (BMMS) for lithium-ion battery packs that ensures adequate, safe, and reliable operation. This system will focus on real time diagnostics, prediction of catastrophic failure, and risk assessment for individual cells in high power applications. ...

    STTR Phase I 2010 Department of DefenseNavy
  4. Magnetostrictive Vibration Energy Harvester (MAVEN)

    SBC: Impact Technologies            Topic: N10AT020

    Impact Technologies, in cooperation with Dr. Mohammed Daqaq from Clemson University, propose to develop a magnetostrictive materials based device for harvesting energy from mechanical vibration. The energy harvesting device will harness power from ship-hull vibrations in order to power sensing devices. This technology will be a key enabler for improved structural and machinery health management. K ...

    STTR Phase I 2010 Department of DefenseNavy
  5. Advanced Software Tools for Lithium Ion Battery Risk Assessment (LIBRA)

    SBC: Impact Technologies            Topic: N10AT014

    Impact Technologies, in collaboration with the Georgia Tech Center for Innovative Fuel Cell and Battery Technologies, proposes to develop tools for Lithium Ion Battery Risk Assessment (LIBRA). These tools will allow the Navy to analyze proposed Li-Ion battery designs and assess the overall risk to the platform in the event of failure in a single cell. The tool will also predict the effects of a ca ...

    STTR Phase I 2010 Department of DefenseNavy
  6. Development of High-Efficiency, High Power Electron Beam Accelerator Technologies

    SBC: Jp Accelerator Works            Topic: N10AT023

    This research investigates the feasibility of improving operational readiness, reliability and availability of high current cryogenic rf linear accelerators using a cryogenic compatible resonant coupling technique to couple all of the accelerator sections together, including any room temperature portion. This technique guarantees a single resonant frequency for the system insuring rapid turn on. T ...

    STTR Phase I 2010 Department of DefenseNavy
  7. High Efficiency Gain Media for Eye-Safer 1.55 µm Ultrafast Fiber Amplifiers

    SBC: Kapteyn-Murnane Laboratories, Inc.            Topic: N10AT012

    We propose to design a high average power Er:Fiber ultrafast laser system which is pumped at 14xxnm, and at the same time solve other problems related to ultrashort pulses in fiber lasers. The advantage of using 14xxnm pumping is the reduction of the standard quantum defect from 37% to 5%, thus greatly reducing the thermal load on the system, which makes it inherently more efficient. We also inten ...

    STTR Phase I 2010 Department of DefenseNavy
  8. Using Stylistic Topic Models to Detect Deception Through Unusual Linguistic Activity

    SBC: KITWARE INC            Topic: N10AT029

    Analysts are faced with the challenge of sifting through enormous quantities of documents, blog posts, communications, etc. to find deceptive behaviors. We propose novel techniques for efficiently and automatically detecting deception on large data with high accuracy by using methodologies from both stylometry and topic modeling. This combined approach will learn models of authors and will detect ...

    STTR Phase I 2010 Department of DefenseNavy
  9. A Fast-Response, Electronically Controlled Fuel Injection System for Small Heavy Fuel Engines with Multi-Fuel Capabilities

    SBC: MAINSTREAM ENGINEERING CORP            Topic: N10AT033

    Advances in electronically controlled injection technologies for diesel engines have provided a method to improve medium- to heavy-duty engine performance through increased injection pressures, multiple injections, and injection rate shaping. Although these injection systems have been primarily limited to larger engines, the ability to rapidly and precisely meter fuel for smaller engines is partic ...

    STTR Phase I 2010 Department of DefenseNavy
  10. Innovative Passive Magnetic Thrust Bearings for High-Speed Turbomachinery

    SBC: MAINSTREAM ENGINEERING CORP            Topic: N10AT037

    In miniature gas turbines for UAV applications, traditional bearings exhibit a typical lifetime of only 25 hours due to excessive axial loading. Mainstream proposes to use a passive, permanent magnet thrust bearing to alleviate this problem and increase service life to over 1000 hours. Since this type of bearing is non-contacting, it can operate at very high rotational speeds with minimal heat gen ...

    STTR Phase I 2010 Department of DefenseNavy
US Flag An Official Website of the United States Government