You are here
Award Data
The Award database is continually updated throughout the year. As a result, data for FY23 is not expected to be complete until September, 2024.
Download all SBIR.gov award data either with award abstracts (290MB)
or without award abstracts (65MB).
A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.
The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.
-
Process to Mitigate Catastrophic Optical Damage to Quantum Cascade Lasers
SBC: IRGLARE LLC Topic: N19AT004The development of a catastrophic optical damage model for quantum cascade lasers describing instantaneous laser damage at high optical power levels is proposed. The model will be validated by comparison to experimental data. Based on obtained results, changes to laser design and laser fabrication resulting in an increased damage threshold will be implemented. The work will ultimately result into ...
STTR Phase I 2019 Department of DefenseNavy -
Mid-Infrared Laser Absorption Spectroscopy for Multi-Parameter Rotating Detonation Analysis
SBC: OPTO-KNOWLEDGE SYSTEMS INC Topic: AF19AT011New, innovative laser spectroscopy technology will be developed for performance quantification and combustion characterization in a Rotational Detonation Rocket Engine (RDRE). The effort will push the state of the art in tunable laser absorption spectroscopy to enable fast time response diagnostics of the extreme pressure and temperature conditions of an RDRE.
STTR Phase I 2019 Department of DefenseAir Force -
High Speed Spinning Scroll Expander (HiSSSE)- Organic Rankine Cycle for Increased Naval Ship Power Density and Fuel Efficiency
SBC: Air Squared, Inc. Topic: N19AT013Waste heat from Naval diesel generators provides significant opportunity to introduce organic Rankine cycles (ORC) to increase their fuel efficiency. The objective of the proposed effort is to design and demonstrate a high-speed, spinning scroll expander (HiSSSE) ORC as a power dense waste heat recovery system for diesel generators on ships. The system will leverage Air Squared’s spinning scroll ...
STTR Phase I 2019 Department of DefenseNavy -
Power Dense Turbo-Compression Cooling Driven by Waste Heat
SBC: MANTEL TECHNOLOGIES INC Topic: N19AT013The U.S. Navy seeks methods to improve the fuel economy of marine diesel engines through utilization of waste heat. Low temperature engine jacket water, lubrication oil, and aftercooler air are largely untapped streams of thermal energy on these ships, but their utilization circumvents many operation challenges associated with exhaust gases. For example, variable and high exhaust gas temperatures ...
STTR Phase I 2019 Department of DefenseNavy -
GECCO: Gecko-gripper for EOD with Cavitation Cleaning Operation
SBC: VALOR ROBOTICS, LLC Topic: N19AT011The objective of the Phase I proposal is to investigate the application of controlled cavitation cleaning technology in conjunction with gecko-inspired mechanical adhesion and soft elastomeric applicators for use in non-intrusive EOD operations. This investigation requires the proof-of-concept testing and validation of a controlled cavitation cleaning mechanism, and a soft robotic gecko-inspired m ...
STTR Phase I 2019 Department of DefenseNavy -
Predictive Graph Convolutional Networks
SBC: Arete Associates Topic: N19AT017The US Navy’s mission to maintain, train and equip combat-ready Naval forces requires that decision makers have situational awareness of the capabilities, limitations, vulnerabilities/opportunities for adversarial and allied forces. An incomplete or inaccurate understanding of the current landscape and associated trends could lead to suboptimal mission readiness and outcomes. Analysts need tools ...
STTR Phase I 2019 Department of DefenseNavy -
Seamless Wireless Charging of Micro and Small Unmanned Aerial System Through Local Power Transmission Infrastructure
SBC: E H Group, Inc. Topic: N19AT019Wireless charging of unmanned aerial system (UAS) platforms from the environment has the potential to greatly increase flight and mission times. A promising option is to use electromagnetic fields from the power transmission infrastructure as an energy source. EH Group and the University of Alabama propose a design for UAS wireless charging in the near-field environment of the commercial power tra ...
STTR Phase I 2019 Department of DefenseNavy -
Energy Scavenging to Power Fielded Unmanned Aerial Systems
SBC: Luna Innovations Incorporated Topic: N19AT019Unmanned aerial systems (UAS) provide strategic advantage for our nation’s warfighters, and the use of micro- and small-scale platforms on the battlefield is expected to increase significantly in coming years. This presents a logistical challenge in managing how system batteries are recharged throughout the UAS lifespan. The desired goal is to develop power systems that enable persistent deploym ...
STTR Phase I 2019 Department of DefenseNavy -
Compact and Low-cost High Performance Spectrometer Sensor based on Integrated Photonics Technology
SBC: ULTRA-LOW LOSS TECHNOLOGIES LLC Topic: N19AT023Ultra-Low Loss Technologies (ULL Technologies) is proposing in collaboration with Prof. Arka Majumdar from University of Washington (UW), to develop a compact, low-cost spectrometer module to be used for chemical sensing applications and to be fabricated using the process design kit (PDK) available through AIM Photonics multi-project wafer run (MPW). The team will combine ULL Technologies expertis ...
STTR Phase I 2019 Department of DefenseNavy -
Multi-lingual Social-media Crowd Manipulation Detector (MSCMD)
SBC: BCL Technologies Topic: N19AT024In this SBIR, BCL proposes developing a Multi-lingual Social-media Crowd Manipulation Detector (MSCMD). The MSCMD will use natural language processing techniques to detect terms that arouse emotion using information out of context to trigger reaction from the audience and move them to act.The MSCMD will operate in Asian languages using a Natural Language Processor for each language. The MSCMD will ...
STTR Phase I 2019 Department of DefenseNavy