You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. High Efficiency Computation of High Reynolds Number Flows

    SBC: Technosoft, Inc            Topic: N13AT009

    Although advancements in CFD technology and high performance computing have proven to be effective and reasonably accurate in assessing the hydrodynamic performance of naval vessels, the effort required to develop associated analysis models remains a challenging and time consuming task. Decomposing and manipulating the design geometry for mesh construction, while capturing near-field and far-field ...

    STTR Phase I 2013 Department of DefenseNavy
  2. Mechanical Property Characterization and Modeling for Structural Mo-Si-B Alloys for High Temperature Applications

    SBC: Imaging Systems Technology, Inc.            Topic: N13AT012

    Under this STTR, Imaging Systems Technology (IST) in cooperation with Georgia Institute Technology (GIT) will develop and mature models to predict mechanical properties of refractory alloys with an eye toward tailoring these alloys for specific applications. In particular, this research will focus on addressing core aspects of Integrated Computational Materials Engineering (ICME) as it applies to ...

    STTR Phase I 2013 Department of DefenseNavy
  3. Mechanical Property Characterization and Modeling for Structural Mo-Si-B Alloys for High Temperature Applications

    SBC: Deep Springs Technology            Topic: N13AT012

    The objective of the work described in this proposal is to aid in the advancement of Mo-Si-B alloys for use in high temperature applications such as hot gas stream components in turbine engines. Such alloys are being characterized for their monotonic tensile properties in tension and compression as well for their creep resistance. Likewise, multiphase Mo-Si-B alloys have been studied in terms of m ...

    STTR Phase I 2013 Department of DefenseNavy
  4. Progressive Model Generation for Adaptive Resilient System Software

    SBC: SECURBORATION, INC.            Topic: N13AT014

    Complex software systems are typically developed by disparate engineering teams working concurrently. At the same time, software requirements are frequently dynamic, evolving even during active development cycles. Discrepancies between how software is defined and how it is implemented at the modular level can cascade into critical system errors when modules are integrated. More troubling is that i ...

    STTR Phase I 2013 Department of DefenseNavy
  5. Compact robust testbed for cold-atom clock and sensor applications

    SBC: COLDQUANTA, INC.            Topic: N13AT018

    As strontium and other alkaline-earth metals become increasingly attractive for ultracold-atom applications, there is a growing need to develop compact, robust systems for cooling, trapping, and studying these elements. In this proposal, ColdQuanta will team with Dr. Jun Ye at JILA and the University of Colorado at Boulder to develop a portable, turn-key system that can produce, utilize, and optic ...

    STTR Phase I 2013 Department of DefenseNavy
  6. Compact, cold-atom clock for Navy field use

    SBC: VESCENT PHOTONICS LLC            Topic: N13AT018

    Vescent Photonics proposes to develop a compact laser system and integrate it with a cold-atom micro primary standard developed under the DARPA IMPACT program. In phase I we will investigate performance enhancements resulting from immobilizing the cold-atom sample with an optical lattice formed from an optical field whose wavelength is chosen to minimize the differential light shifts between the s ...

    STTR Phase I 2013 Department of DefenseNavy
  7. Development of Next-Generation Composite Flywheel Design for Shock and Vibration Tolerant, High Density Rotating Energy Storage

    SBC: PowerTHRU            Topic: N13AT022

    PowerTHRU Corporation proposes to meet or exceed the requirements of this STTR by utilizing its extensive experience in carbon fiber based high speed flywheel systems, to design and build a 100K RPM flywheel system. Unlike steel flywheel technologies that are limited by the speed in which they can safely rotate, PowerTHRU has already demonstrated that 50,000 RPM carbon fiber flywheels can be desig ...

    STTR Phase I 2013 Department of DefenseNavy
  8. Situational Awareness as a Man-Machine Map Reduce Job

    SBC: SOAR TECHNOLOGY INC            Topic: N13AT024

    Improving situational awareness and accuracy of decisions in complex missions relying on streaming open-source data requires scalable information extraction and fusion in collaboration between Man and Machine reasoning. SoarTech, with its proven track-record of basic and applied research and transition into actual deployment, will bring forward advanced imagery and text processing technology integ ...

    STTR Phase I 2013 Department of DefenseNavy
  9. Maneuver Prediction and Avoidance Logic For Unmanned Aircraft System Encounters with Non-Cooperative Air Traffic

    SBC: NUMERICA CORPORATION            Topic: N13AT003

    For Unmanned Aircraft Systems (UAS) to operate seamlessly in both the U.S. National Airspace System (NAS) and abroad, it will be crucial that they possess a sense-and-avoid (SAA) capability that can ensure safe operations among maneuvering, non-cooperative aircraft. Numerica Corporation, in partnership with Johns Hopkins University, proposes to develop a set of algorithms to model the uncertaintie ...

    STTR Phase I 2013 Department of DefenseNavy
  10. Intelligence and Intuition for Enhanced Decision Making (I2EDM)

    SBC: MODUS OPERANDI, INC.            Topic: N13AT024

    The focus of our Intelligence and Intuition for Enhanced Decision Making (I2EDM) Phase 1 research is to provide efficient and timely automated production and dissemination of information products in support of doctrinal Decision Points for the Company and below in austere environments. Operating in the Cloud, I2EDM will continuously fuse tactical information with human intuition and experience to ...

    STTR Phase I 2013 Department of DefenseNavy
US Flag An Official Website of the United States Government