You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Coupling Collaboration to SOA Services and Decision Support for the Warfighter via Navy Wave

    SBC: HARMONIA HOLDINGS GROUP, LLC            Topic: N10AT045

    Collaboration between Navy warfighters at the Operational Level of War is essential. In the Navy today collaboration to achieve Commander’s Control Actions is done ashore and on large deck afloat platforms with video teleconferencing and voice over IP. But only those platforms have sufficient bandwidth, and even then available bandwidth drop during mission critical times. Meanwhile the only ubiq ...

    STTR Phase I 2010 Department of DefenseNavy
  2. Large Area IR Metamaterial Films

    SBC: Sensormetrix INC            Topic: N09T018

    We are proposing to develop a process for large area fabrication of metamaterial films with electromagnetic responses that can be manipulated in the infrared region to enable tailored reflectivity and emissivity. Because the approach is based on metamaterials, this technique can readily be scaled to higher or lower frequencies.

    STTR Phase II 2010 Department of DefenseNavy
  3. Random Number Generation for High Performance Computing

    SBC: FRONTIER TECHNOLOGY INC.            Topic: A10AT012

    Frontier Technology, Inc. and University of Rhode Island Physics department propose to develop innovative, scalable random number generators for use on multiple parallel computing architectures. Our Phase I effort will include a comprehensive assessment of currently available algorithms for parallel random number generation as well as the currently available tests designed to uncover statistical d ...

    STTR Phase I 2010 Department of DefenseArmy
  4. Linking Output Activity to Outcomes/Impacts in Complex Contingency Environments

    SBC: FRONTIER TECHNOLOGY INC.            Topic: OSD08T003

    As the U.S. Government increases participation in post-conflict Stabilization and Reconstruction Operations (SARO) around the globe, the ability to understand the relationships between task completion and mission completion is critical. The US Government employs a metrics tool developed though the Monitoring Progress in Conflict Environments project. The objective of this Phase II STTR is to provi ...

    STTR Phase II 2010 Department of DefenseArmy
  5. Adaptive Learning for Stall Pre-cursor Identification and General Impending Failure Prediction

    SBC: FRONTIER TECHNOLOGY INC.            Topic: N10AT008

    Frontier Technology, Inc. (FTI) and Northeastern University propose to investigate and develop an innovative approach to predict stall events of aircraft engines prior to occurrence and in sufficient time to allow the FADEC controller to adjust engine variables. The team will utilize vector quantization and neural network techniques to develop accurate models of engine behavior that will be used t ...

    STTR Phase I 2010 Department of DefenseNavy
  6. Linking Output Activity to Outcomes/Impacts in Complex Contingency Environments

    SBC: FRONTIER TECHNOLOGY INC.            Topic: OSD08T003

    As the U.S. Government increases participation in post-conflict Stabilization and Reconstruction Operations (SARO) around the globe, the ability to understand the relationships between task completion and mission completion is critical. The US Government employs a metrics tool developed though the Monitoring Progress in Conflict Environments project. The objective of this Phase II STTR is to provi ...

    STTR Phase II 2010 Department of DefenseArmy
  7. High Efficiency Gain Media for Eye-Safer 1.55 µm Ultrafast Fiber Amplifiers

    SBC: KAPTEYN-MURNANE LABORATORIES, INC            Topic: N10AT012

    We propose to design a high average power Er:Fiber ultrafast laser system which is pumped at 14xxnm, and at the same time solve other problems related to ultrashort pulses in fiber lasers. The advantage of using 14xxnm pumping is the reduction of the standard quantum defect from 37% to 5%, thus greatly reducing the thermal load on the system, which makes it inherently more efficient. We also inten ...

    STTR Phase I 2010 Department of DefenseNavy
  8. Massively Parallel Micromachining with Ultrafast Lasers

    SBC: KAPTEYN-MURNANE LABORATORIES, INC            Topic: AF08T029

    We are proposing to develop a highly parallel, rapid prototyping system for the manufacture of microfluidic devices. In this phase II proposal we will build a complete system for making such devices for continued research on fieldable microfluidic systems for use in the military, and in hospitals. The project will also allow manufacturing in widely different materials, and structures, without an ...

    STTR Phase II 2010 Department of DefenseAir Force
  9. Advanced Real Time Battery Monitoring and Management System

    SBC: TECHNOLOGY SERVICE CORP            Topic: N10AT013

    TSC and Purdue University will demonstrate a lab prototype of software and hardware capable of doing high speed monitoring of a Lithium-Ion cell. This monitoring needs to be specifically designed to predict failures. When a predictive failure is indicated a defensive countermeasure needs to be implemented. Our specific project goals are to: 1) Select a Lithium-Ion battery that consists of multiple ...

    STTR Phase I 2010 Department of DefenseNavy
  10. Dynamic Multisensor Exploitation (DYME)

    SBC: TECHNOLOGY SERVICE CORP            Topic: ST081008

    The challenges faced by airborne and ground-based sensors in detecting, classifying, identifying, associating and tracking difficult moving targets, such as insurgent forces, operating in difficult terrain such as mountains and forests will be addressed. Our team will quantify the performance that can be achieved using multi-sensor, multi-spectral, and multi-platform techniques, where the sensors ...

    STTR Phase II 2010 Department of DefenseDefense Advanced Research Projects Agency
US Flag An Official Website of the United States Government