You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY22 is not expected to be complete until September, 2023.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Ultra Wideband Receiver (UWR) – Sample Clock Modulation

    SBC: OCEANIT LABORATORIES INC            Topic: AF18CT003

    Modern electronic warfare (EW) employs agile, dynamic, convert waveforms. It has become challenging for legacy electronic intelligence (ELINT) receivers to intercept such waveforms. To cover a wide frequency band, many frequencies must be scanned rapidly. Therefore, the probability of intercepting by the super heterodyne receiver is limited by the intermediate frequency (IF) bandwidth and tuning s ...

    STTR Phase I 2019 Department of DefenseAir Force
  2. Compact Mode-Hop Free Narrow Line Turnkey Laser System for Quantum Technology

    SBC: OEWAVES, INC            Topic: A18BT014

    In this Project OEwaves Inc. in collaboration with the UCLA trapped-ion quantum computing group proposes to develop extended-cavity ultra-stable diode laser systems that have the properties required for quantum computing and metrology. The system will be based on a semiconductor laser locked to a monolithic microcavity (a whispering gallery mode resonator, WGMR [1]) using a self-injection locking ...

    STTR Phase I 2019 Department of DefenseArmy
  3. Reconfigurable / cognitive optical communications

    SBC: VULCAN WIRELESS, INC.            Topic: AF18AT010

    This proposal will outline a bi-directional software defined Free Space Optics (FSO) laser communications testbed with flexible optical elements and reprogrammable waveform and signal processing elements. Vulcan Wireless Inc. currently manufacturers a 1550nm, eye safe, software defined Laser Communications Testbed MD-LC-1 and will use this as a basis for the Phase 1 effort. We will also be teaming ...

    STTR Phase I 2019 Department of DefenseAir Force
  4. Deep Ultraviolet Light Sources for Water Purification and Surface Sterilization

    SBC: TRIPLE RING TECHNOLOGIES INC            Topic: A18BT006

    This proposal is related to the development of high efficiency ultraviolet (UV) light emitting devices (LEDs) operating at 265 nm and 219 nm, which have the potential to replace conventional mercury lamps for many applications including dinsinfection and water purification. To date, the wall-plug efficiency of commercial LEDs operating at 265 nm is in the range of 2-3%, which has been limited by t ...

    STTR Phase I 2019 Department of DefenseArmy
  5. Embedded Device Isolation for Trusted High-Assurance (EDITH)

    SBC: RAM LABORATORIES            Topic: AF19AT013

    Current techniques for supporting Multi-Level Security (MLS) on embedded devices rely on maintaining secure connections back to centralized servers or dedicated computers for managing authentication and access controls. To provide the embedded devices with the capability to handle content of differing security levels directly on device, the operating system (OS) must properly and securely isolate ...

    STTR Phase I 2019 Department of DefenseAir Force
  6. Handoff Training for Combat Casualty Care (HTC3) Framework

    SBC: Perceptronics Solutions, Inc.            Topic: DHA17B001

    This proposal is to develop a Handoff Training for Combat Casualty Care (HTC3) Framework.Training is the crux of the handoff problem today. Patient handoffs are a crucial part of casualty care, both in military and civilian environments; and today handoffs are being performed in less than optimal fashion, with ineffective communications accounting for 80% of the handoff errors. Our new HTC3 Framew ...

    STTR Phase I 2018 Department of DefenseDefense Health Agency
  7. Mitigation of Ransomware

    SBC: OCEANIT LABORATORIES INC            Topic: A18BT010

    In this Phase I SBIR, Oceanit in partnership with the University of Michigan, will create a highly effective end-to-end technology solution that mitigates the threats that ransomware poses to computer memory systems. By providing a more effective recovery from attacks, our solution will enhance the operational readiness and resiliency of Army and DoD information systems.

    STTR Phase I 2019 Department of DefenseArmy
  8. Carbon Nanotube Based Monolithic Millimeter-wave Integrated Circuits

    SBC: ATOM INC            Topic: A18BT004

    In this project, we propose to develop a high-performance carbon nanotube (CNT) based millimeter-wave transistor technology and demonstrate monolithic millimeter-wave integrated circuits (MMICs) based on this technology with improved power efficiency, linearity, noise and dynamic range performance over existing GaAs, SiGe and RF-CMOS technologies. The goal of this topic is to leverage Professor St ...

    STTR Phase I 2019 Department of DefenseArmy
  9. High Linearity RF Amplifiers from Carbon Nanotubes

    SBC: CARBON TECHNOLOGY INC            Topic: A18BT004

    The Key to further improving the data rate in data communication while minimizing the power consumption is to improve the linearity of a power amplifiers in the system. Carbon Nanotube (CNT) offer intrinsically linear behavior, but to realize advanced linearity in a practical device requires high quality CNT material, and a fabrication process that can take the full advantage of the superior prope ...

    STTR Phase I 2019 Department of DefenseArmy
  10. Optimization of Sodium Guide Star Return using Polarization and/or Modulation Control

    SBC: ROCHESTER SCIENTIFIC LLC            Topic: AF19AT008

    Large ground-based telescopes require adaptive optics (AO) to correct for distortions introduced by atmospheric turbulence. In order to function, the AO system must track a bright point source. Although a natural star may be used, full sky coverage requires an artificial beacon created with a laser. The most common type of laser guide star (LGS) employs the mesospheric layer of sodium atoms at an ...

    STTR Phase I 2019 Department of DefenseAir Force
US Flag An Official Website of the United States Government