You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Infrared Light Emitting Arrays for Target Image Projection

    SBC: ATTOLLO ENGINEERING, LLC            Topic: AF16AT22

    Current scene projection hardware is challenged to simultaneously meet the requirements for high peak temperature (> 2000K), high resolution (2Kx2K), response time < 4 ms, cryogenic and temporally uniform photon flux. MEMS, Resistor arrays, liquid cr...

    STTR Phase I 2016 Department of DefenseAir Force
  2. Validation Experiments to Measure Transient Aerothermoelastic Response of a Curved Panel to Hypersonic Flows

    SBC: METROLASER, INCORPORATED            Topic: AF16AT24

    An experiment to obtain validation data on the transient aerothermoelastic response of a curved panel in hypersonic flows will be designed and evaluated for its feasibility. Significant challenges must be overcome for a successful experimental campaign i...

    STTR Phase I 2016 Department of DefenseAir Force
  3. Low Loss, High Average Power PM WDMs for Raman Fiber Lasers

    SBC: POLARONYX INC            Topic: AF13AT03

    We propose a new fiber WDM fabrication method for single mode high power fiber laser. Our new approach will enable kW operation for both single mode fiber WDM and PCF WDM. In Phase I, a proof of concept experiment has been demonstrated. In phase II, we will target at delivery of a reliable prototypes for both step index fiber WDM and PCF WDM.

    STTR Phase II 2015 Department of DefenseAir Force
  4. Evaluation of SANDGT Using SOA Framework for Persistent and Risk-Averse Space Situation Awareness

    SBC: INTELLIGENT FUSION TECHNOLOGY, INC.            Topic: AF12BT09

    ABSTRACT: Space superiority needs protected tactical space communications with dynamic spectrum sharing, routing adaptation and interference mitigations against kinetic and non kinetic threats. The main focus of this project is to develop game-theoretic analytics and frameworks to support the Air Forces autonomy science & technology strategy (e.g., "deterrence" posture which in turn may be enabled ...

    STTR Phase II 2015 Department of DefenseAir Force
  5. Physical Sub-Model Development for Turbulence Combustion Closure

    SBC: COMBUSTION SCIENCE & ENGINEERING, INC.            Topic: AF13AT12

    ABSTRACT: The U. S. Air Force needs turbulent combustion models that can be used to simulate combustion in actual propulsion systems at both design and off-design conditions, not models that are only useful for highly idealized problems. With this motivation in mind, Combustion Science & Engineering, Inc. and the Computational Combustion Lab at Georgia Tech plan to enhance current capabilities to ...

    STTR Phase II 2015 Department of DefenseAir Force
  6. Harness Enhanced Awareness for Radio System (HEARS) for Dynamic Spectrum Access in Space Application

    SBC: INTELLIGENT FUSION TECHNOLOGY, INC.            Topic: AF13AT02

    ABSTRACT: In this project, IFT and its academic partner GMU developed an innovative Harness Enhanced Awareness for Radio Systems (HEARS) framework and technical underpinnings for DSA systems operating under conditions of imperfect knowledge, and used the framework to address challenging problems in satellite communication (SATCOM)DSA. As the logical core of the HEARS, Multi-Entity Bayesian Network ...

    STTR Phase II 2015 Department of DefenseAir Force
  7. EX-SCAN: Autonomous Inspection System for Aircraft Surface Coatings

    SBC: Intelligent Automation, Inc.            Topic: AF14AT09

    Current methods for inspecting the external surfaces of low-observable (LO) aircraft are time consuming and error prone. Technology that can reduce inspection times and minimize human error will benefit the Air Force by increasing assessment reliability and aircraft availability while reducing maintenance costs. To address this need, Intelligent Automation (IAI) and Carnegie Mellon University (CMU ...

    STTR Phase II 2016 Department of DefenseAir Force
  8. Rydberg-atom RF Sensors for Direction Finding and Geolocation

    SBC: COLDQUANTA, INC.            Topic: AF17AT028

    ColdQuanta is partnering with Dr. Zoya Popovic at the University of Colorado, Boulder, to develop a three-dimensional quantum-enhanced radio-frequency (RF) signal sensor and direction finder. Our approach combine Rydberg-atom-based RF electrometry and discrete lens arrays (DLAs) of planar antennas. The DLA will serve as a Fourier optic for an incident wave, and a Rydberg-atom RF electrometer will ...

    STTR Phase I 2018 Department of DefenseAir Force
  9. Higher Order Mesh Generation for Simulation of Complex Systems

    SBC: HYPERCOMP INC            Topic: AF14AT07

    In this program, HyPerComp and University of Michigan have teamedtogether to develop a high-order grid generator for Euler and viscousmeshes. The grid generator is based on HyPerComps successful generalpurpose CAD2Mesh software and is being integrated with HyPerCompsHDphysics and U. Michigans XFlow DG high-order solvers. High-order gridgeneration methods are being implemented to accurately capture ...

    STTR Phase II 2016 Department of DefenseAir Force
  10. High-Sensitivity Monolithic Silicon CMOS APD and ROIC

    SBC: FREEDOM PHOTONICS LLC            Topic: AF14AT13

    This work will focus on the development of monolithic SWIR focal plane array technologies using CMOS or CMOS compatible fabrication technology. This will be realized on a Silicon substrate and incorporate APD+TIA arrays and be scalable to Megapixel arrays and coherent receiver operation for capture of the full optical wavefront vector information.

    STTR Phase II 2016 Department of DefenseAir Force
US Flag An Official Website of the United States Government