You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY23 is not expected to be complete until September, 2024.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Novel Separator Materials for Achieving High Energy/Power Density, Safe, Long-Lasting Lithium-ion Batteries for Navy Aircraft Applications.

    SBC: OCEANIT LABORATORIES INC            Topic: N16AT008

    Oceanit proposes to develop and demonstrate novel, tailored, designer separator materials with optimized properties to maximize lithium-ion cell/battery performance, life, safety and reliability.

    STTR Phase I 2016 Department of DefenseNavy
  2. Air Cycle Machine Low Friction, Medium Temperature, Foil Bearing Coating

    SBC: ACREE TECHNOLOGIES INCORPORATED            Topic: N16AT005

    The purpose of this project is to demonstrate the feasibility of using an innovative, durable, low friction, and non-toxic solid lubricant coating for foil air bearings for air cycle machines (ACM). Acrees coating provides superior wear characteristics at all temperatures and provides a substantial improvement over polyimide type coatings that are currently used on ACMs. The coating consists of tw ...

    STTR Phase I 2016 Department of DefenseNavy
  3. Air Cycle Machine Low Friction, Medium Temperature, Foil Bearing Coating

    SBC: IBC Materials & Technologies, LLC            Topic: N16AT005

    In this proposed SBIR program, IBC Materials & Technologies, in conjunction with our industry partner Mechanical Solutions, Inc. (MSI) and Texas A&M University, will leverage our knowledge and experience in the domain of industrial metallic coatings to develop a metallurgical coating solution for the Air Foil Bearing. IBC has deep expertise in a variety of industrial coating processes including mu ...

    STTR Phase I 2016 Department of DefenseNavy
  4. Durable, Low Friction Coatings For Air Cycle Machine Foil Bearings

    SBC: TECHNOLOGY ASSESSMENT AND TRANSFER, INC.            Topic: N16AT005

    Technology Assessment and Transfer will demonstrate the potential of novel, low friction and low wear coatings that are capable of providing long term durability for air cycle machine foil bearings. A systematic approach with a high probability of success includes the following: unique low friction, wear resistant alloys and lubricating ceramic composites, magnetron sputtering, the ideal method fo ...

    STTR Phase I 2016 Department of DefenseNavy
  5. Large-scale Entity Linking and Disambiguation with DeepDive

    SBC: CLEARCUT ANALYTICS, INC            Topic: N16AT016

    DeepDive is a system for extracting relational databases from dark data: the mass of text, tables, and images that are widely collected and stored but which cannot be exploited by standard relational tools. If the information in dark data --- scientific papers, Web classified ads, customer service notes, and so on --- were instead in a relational database, it would give analysts access to a massiv ...

    STTR Phase I 2016 Department of DefenseNavy
  6. Development of a Micro-glider for Oceanographic Air-Sea Interaction Sampling

    SBC: MRV SYSTEMS LLC            Topic: N14AT020

    This proposal is a collaborative effort between MRV Systems and the Woods Hole Oceanographic Institution. The goal is to develop a new, small, inexpensive autonomous vehicle to investigate mixed layer dynamics and turbulent mixing. The preliminary Phase I design, a Diagonally Operating Platform (DOP), is a profiling float with moveable fins. DOP will turn toward an intended direction within a few ...

    STTR Phase II 2016 Department of DefenseNavy
  7. Bonded Joint Analysis Method

    SBC: M4 ENGINEERING, INC.            Topic: N12AT004

    During Phase I and Phase II, M4 Engineering, Inc. and Sandia National Laboratories have created a unique bonded joint analysis methodology and associated software. During Phase II.5, the developed techniques will be further enhanced and a fully functional commercial analysis code (SIMULIA/Abaqus) plug-in will be created. The software plug-in will make the advanced technology accessible to all leve ...

    STTR Phase II 2016 Department of DefenseNavy
  8. Coupled Multi-physics Analysis and Design Optimization of nozzles (COMANDO)

    SBC: Intelligent Automation, Inc.            Topic: N14AT005

    The US Navy faces daunting energy challenges that will further increase in severity, given the ever-increasing global demand for energy, diminishing energy supplies and demand for enhanced environmental stewardship. Additionally, noise is an important issue for the Navy due to the adverse effect it has on personnel and communities around naval air bases and training sites. Military combat aircraft ...

    STTR Phase II 2015 Department of DefenseNavy
  9. Demonstration of a Local Carrier-Based Precision Approach and Landing System (LC-PALS)

    SBC: TOYON RESEARCH CORPORATION            Topic: N14AT009

    Toyon Research Corporation, together with the University of California, Santa Barbara (UCSB) propose to demonstrate a GPS-denied Local Carrier-based Precision Approach and Landing System (LC-PALS) that enables 3-D position, navigation and time (PNT) for platforms within range of an aircraft carrier equipped with one or more ADEPT-compliant beacons. Unlike the Global Positioning System (GPS), which ...

    STTR Phase II 2015 Department of DefenseNavy
  10. Object Cueing Using Biomimetic Approaches to Visual Information Processing

    SBC: MAYACHITRA, INC.            Topic: N14AT008

    Thousands of years of evolution have produced the human vision system that computers cannot replicate well. Humans are still unsurpassed in their ability to search for objects in visual scenes. To successfully detect objects in cluttered scenes, the human brain is thought to rely on multiple factors: prior probabilities of object occurrence, global scene statistics and object co-occurrence. Machin ...

    STTR Phase II 2015 Department of DefenseNavy
US Flag An Official Website of the United States Government