You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY23 is not expected to be complete until September, 2024.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. SOCRATES Maritime Multi-access Optical Communication and System

    SBC: SA PHOTONICS, LLC            Topic: N16AT024

    SA Photonics is pleased to propose the SOCRATES free space optical communication and sensing system featuring the Photonic Optical Multicast Mast Unit (POMMU). SOCRATES enables 360 degree multicast capability of high bandwidth communication in addition threat search and track capability. SA Photonics will team with the Prof. Michal Lipson of the Lipson Nanophotonics Group at Columbia University wh ...

    STTR Phase I 2016 Department of DefenseNavy
  2. Bonded Joint Analysis Method

    SBC: M4 ENGINEERING, INC.            Topic: N12AT004

    During Phase I and Phase II, M4 Engineering, Inc. and Sandia National Laboratories have created a unique bonded joint analysis methodology and associated software. During Phase II.5, the developed techniques will be further enhanced and a fully functional commercial analysis code (SIMULIA/Abaqus) plug-in will be created. The software plug-in will make the advanced technology accessible to all leve ...

    STTR Phase II 2016 Department of DefenseNavy
  3. LCS Radar Modeling for Training (LRMT)

    SBC: Intelligent Automation, Inc.            Topic: N14AT012

    We propose the design and development of LCS radar modeling for training a radar modeling engine that capture the effects of environment, weather, jamming/interference and operator actions on radar display. The purpose of this engine is to reduce or eliminate the need for live training by faithfully capturing the scenarios encountered by a radar operator. The primary target radars for the propose ...

    STTR Phase II 2016 Department of DefenseNavy
  4. High Fidelity Rotorcraft Towing Modeling and Simulation with Towed Magnetic Anomaly Detection System

    SBC: ADVANCED ROTORCRAFT TECHNOLOGY, INC.            Topic: N15AT009

    Towing of a Magnetic Anomaly Detection (MAD) system is an important aspect of rotorcraftmaritime operation. The oscillatory rotorcraft combined with the long and flexible towingcable, the low mass ratio of the towed body to the towing aircraft, and the rotor wake effecton the towed body presents a challenge for integration of a modern MAD system withrotorcraft platform. The research objective is t ...

    STTR Phase II 2016 Department of DefenseNavy
  5. Development of a Micro-glider for Oceanographic Air-Sea Interaction Sampling

    SBC: MRV SYSTEMS LLC            Topic: N14AT020

    This proposal is a collaborative effort between MRV Systems and the Woods Hole Oceanographic Institution. The goal is to develop a new, small, inexpensive autonomous vehicle to investigate mixed layer dynamics and turbulent mixing. The preliminary Phase I design, a Diagonally Operating Platform (DOP), is a profiling float with moveable fins. DOP will turn toward an intended direction within a few ...

    STTR Phase II 2016 Department of DefenseNavy
  6. Nonlinear-DSP-Enabled RF-Photonic Link

    SBC: RAM PHOTONICS LLC            Topic: N14AT023

    Digital equalizers have been the major enablers in RF communications in terms of managing component imperfections and channel impairments. Specifically, the ever increasing processing power of the dedicating computing processors has availed a steady increase in the ability of complex communication systems to deal with impairments as well as allowing higher capacities in the information transfer.On ...

    STTR Phase II 2016 Department of DefenseNavy
  7. In Situ Inspection of Additive Manufactured Metallic Parts Using Laser Ultrasonics

    SBC: INTELLIGENT OPTICAL SYSTEMS, INC.            Topic: N15AT008

    Additive manufacturing (AM) is a very promising technique for rapid, low-cost production of aircraft parts directly from a CAD file. AM is especially appealing for complex parts that would be costly or impossible to fabricate by machining or casting. At the current time there are no reliable, cost-effective techniques to qualify the finished parts. Several government studies have noted this gap an ...

    STTR Phase II 2016 Department of DefenseNavy
  8. Quantifying Uncertainty in the Mechanical Performance of Additively Manufactured Parts Due to Material and Process Variation

    SBC: VEXTEC Corporation            Topic: N16AT004

    The Phase I objective is a proof of concept capability integrating process information, material properties and damage tolerance simulations into the Additive Manufacturing (AM) design certification process. VEXTEC has a toolbox of software and methods that consists of various software modules in multiple formats that are used to assess the durability of parts processed by traditional methods of c ...

    STTR Phase I 2016 Department of DefenseNavy
  9. Coupled Multi-physics Analysis and Design Optimization of nozzles (COMANDO)

    SBC: Intelligent Automation, Inc.            Topic: N14AT005

    The US Navy faces daunting energy challenges that will further increase in severity, given the ever-increasing global demand for energy, diminishing energy supplies and demand for enhanced environmental stewardship. Additionally, noise is an important issue for the Navy due to the adverse effect it has on personnel and communities around naval air bases and training sites. Military combat aircraft ...

    STTR Phase II 2015 Department of DefenseNavy
  10. Demonstration of a Local Carrier-Based Precision Approach and Landing System (LC-PALS)

    SBC: TOYON RESEARCH CORPORATION            Topic: N14AT009

    Toyon Research Corporation, together with the University of California, Santa Barbara (UCSB) propose to demonstrate a GPS-denied Local Carrier-based Precision Approach and Landing System (LC-PALS) that enables 3-D position, navigation and time (PNT) for platforms within range of an aircraft carrier equipped with one or more ADEPT-compliant beacons. Unlike the Global Positioning System (GPS), which ...

    STTR Phase II 2015 Department of DefenseNavy
US Flag An Official Website of the United States Government