You are here
Award Data
The Award database is continually updated throughout the year. As a result, data for FY23 is not expected to be complete until September, 2024.
Download all SBIR.gov award data either with award abstracts (290MB)
or without award abstracts (65MB).
A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.
The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.
-
Hybrid DNN-based Transfer Learning and CNN-based Supervised Learning for Object Recognition in Multi-modal Infrared Imagery
SBC: TOYON RESEARCH CORPORATION Topic: 1On this effort Toyon Research Corp. and The Pennsylvania State University are developing deep learning-based algorithms for object recognition and new class discovery in look-down infrared (IR) imagery. Our approach involves the development of a hybrid classifier that exploits both transfer learning and semi-supervised paradigms in order to maintain good generalization accuracy, especially when li ...
STTR Phase I 2018 Department of DefenseNational Geospatial-Intelligence Agency -
Variational Object Recognition and Grouping Network
SBC: INTELLISENSE SYSTEMS INC Topic: NGA181005To address the National Geospatial-Intelligence Agency (NGA) need for overhead imagery analysis algorithms that provide uncertaintymeasures for object recognition and aggregation, Intellisense Systems, Inc. (ISS) proposes to develop a new Variational Object Recognition andGrouping Network (VORGNet) system. It is based on the innovation of implementing a Bayesian convolutional neural network (CNN) ...
SBIR Phase I 2018 Department of DefenseNational Geospatial-Intelligence Agency -
Bayesian Urban Degradation Assessment
SBC: INTELLISENSE SYSTEMS INC Topic: NGA181004To address the NGA need for algorithms that fuse observables from over-flight operations and from ground sources to automatically estimatethe degradation of urban environments due to battle damage or natural disasters, Intellisense Systems, Inc. (ISS) proposes to develop a newBayesian Urban Degradation Assessment (BUDA) software system. It is based on the integration of multiple damage assessment ...
SBIR Phase I 2018 Department of DefenseNational Geospatial-Intelligence Agency -
Bilayer Nanofibers as Wearable Sensors for Detecting Fentanyl Compounds
SBC: Vaporsens, Inc. Topic: HSB0181001Drug overdose is now the leading cause of death for Americans under 50 years old, with fentanyl claiming more lives than any other drug.Alarmingly, the problem is increasing, with fentanyl overdoses claiming nearly twice as many lives in 2016 compared to 2015.In addition to users, first responders are at risk for coming into contact with fentanyl as they perform their duties.Fentanyl is extremely ...
SBIR Phase I 2018 Department of Homeland Security -
Miniature Intelligent Spectral Analyzer
SBC: Physical Optics Corporation Topic: HSB0181003To address the DHS need to rapidly detect radio interference of critical radio frequency (RF) communications channels utilized by first responders, Physical Optics Corporation (POC) proposes to develop a new Miniature Intelligent Spectral Analyzer (MISCAN) device based on a combination of commercial off-the-shelf (COTS) electronic components in a custom software-defined configuration along with in ...
SBIR Phase I 2018 Department of Homeland Security -
Advanced Receiver for Distressed Emitter Localization (ARDEL)
SBC: TOYON RESEARCH CORPORATION Topic: HSB0181002A majority of U.S. adults own a cell phone and are inclined to use it in emergency situations to call for assistance. Unfortunately, in areas where the density of cell towers is low, such as in rural and off-shore environments, the ability of the wireless network to geolocate the origin of the wireless signal is poor to non-existent. Under the proposed effort, Toyon Research Corporation will devel ...
SBIR Phase I 2018 Department of Homeland Security -
Remote Phone Locator for Improved Emergency Rescue
SBC: Physical Optics Corporation Topic: HSB0181002To address the Department of Homeland Security (DHS) need for a cell phone location finder for maritime and remote search and rescue (SAR), Physical Optics Corporation (POC) proposes to develop a new REmote Phone Locator for Improved Emergency Rescue (REPLIER). REPLIER leverages novel techniques recently developed at POC to extend the range of cellular communications and integrate commercial cellu ...
SBIR Phase I 2018 Department of Homeland Security -
A Bidirectional, Transformerless Converter Topology for Grid-tied Energy Storage Systems
SBC: OPCONDYS INC Topic: DEFOA0001736Grid-tied energy storage systems provide stabilization to the electric grid that is necessary to accommodate the growing percentage of electricity generated by intermittent renewable energy sources such as wind and solar. Existing conversion systems between the storage media and the utility lines are large, costly and only 95%-98% energy efficient. In this ARPA-E project, Opcondys, Inc. will build ...
SBIR Phase I 2018 Department of EnergyARPA-E -
Automated and Scalable Analysis of Mobile and IoT Device Firmware
SBC: RAM LABORATORIES Topic: HSB0181008As Internet of Things (IoT) and mobile devices become increasingly popular and widely used, the security of the firmware running on these devices is paramount.However, due to the lack of an efficient and scalable analysis framework, combined with the increasing pressure to get products to market as quickly as possible, the software running on these devices is never properly checked for security vu ...
SBIR Phase I 2018 Department of Homeland Security -
Algorithms for Look-down Infrared Target Exploitation
SBC: SIGNATURE RESEARCH, INC. Topic: 1Signature Research, Inc. (SGR) and Michigan Technological University (MTU) propose a Phase I STTR effort to develop a learning algorithm which exploits the spatio-spectral characteristics inherent within IR imagery and motion imagery.Our archive of modelled and labeled data sets will allow our team to thoroughly capture the variable elements that will drive machine learning performance.The overall ...
STTR Phase I 2018 Department of DefenseNational Geospatial-Intelligence Agency