You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. (SMET) Tele-Operation Feedback System

    SBC: TRITON SYSTEMS, INC.            Topic: A18BT025

    Triton Systems Inc. will work in collaboration with an academic partner to develop a model for a system to dynamically calculate the Center of Gravity (CoG) of a wheeled Squad Multipurpose Equipment Transfer (SMET) vehicle. The Army has tested several SMET vehicles of varying widths and heights and arrived at the conclusion that they ALL roll over, particularly if the vehicle is traversing the ter ...

    STTR Phase I 2019 Department of DefenseArmy
  2. Paper Spray Mass Spectrometry Cartridges with Integrated Sampling and Enrichment

    SBC: Nano Terra, Inc.            Topic: A18BT020

    PS-MS is a simple and powerful method for rapid ambient sample preparation. However, its simplicity also means separation of undesirable components (particulates and molecular interferents) is not possible. Furthermore, samples must be collected by other means (e.g., dried blood spot cards) and placed on the ticket in liquid form before analysis. Although the technique is sensitive (nanograms to t ...

    STTR Phase I 2019 Department of DefenseArmy
  3. Carbon Nanotube FET Modeling and RF circuits

    SBC: METIS DESIGN CORP            Topic: AF18BT006

    The computing demands of future data-intensive applications far exceed the capabilities of today’s electronics and cannot be met by isolated improvements in transistor technologies or integrated circuit (IC) architectures alone. Carbon Nanotube Field-Effect Transistors (CNFET) technology has emerged as leading candidate for energy-efficient and high-performance digital systems. Unfortunatel ...

    STTR Phase I 2019 Department of DefenseAir Force
  4. Electronically Dimmable Eye Protection Devices (EDEPD)

    SBC: Aegis Technologies Group, LLC, The            Topic: AF18BT003

    Electronically dimmable materials with sufficiently strong visible transmission shift, color neutrality, durability and switching speeds have eluded development since the search began nearly half a century ago. We demonstrate the potential for dynamic optical dimming using plasmonic nanostructures with electrodynamic simulations of promising plasmonic metamaterial architectures. In order to achiev ...

    STTR Phase I 2019 Department of DefenseAir Force
  5. Airborne Video Inspection for Automatic Targeting with Ontology Reasoning (AVIATOR)

    SBC: CHARLES RIVER ANALYTICS, INC.            Topic: AF18BT007

    Improved cameras and unmanned air vehicles (UAVs) have led to an explosion in the amount of airborne imagery and video collected by Air Force assets, but there are not enough trained personnel to analyze this imagery in real time. Thus, targets of opportunity and threats go undetected until the chance to act on them has passed. Automatic target detection could alleviate the burden on analysts and ...

    STTR Phase I 2019 Department of DefenseAir Force
  6. Ultra-fast Multiframe X-ray Imaging System for Explosive Events

    SBC: RADIATION MONITORING DEVICES, INC.            Topic: AF18BT014

    Measuring the response of explosives to a variety of thermal and mechanical inputs is important to understand and ultimately predict the reaction violence of an explosive in an accident scenario. Technically, there are many challenges to overcome in observing explosives response. For instance, secondary high explosives are heterogeneous and optically opaque and often need to be confined in metal c ...

    STTR Phase I 2019 Department of DefenseAir Force
  7. X-ray Cinematography for Explosive Events

    SBC: DIVERSIFIED TECHNOLOGIES, INC.            Topic: AF18BT014

    Diversified Technologies, Inc. (DTI) proposes to develop a Multiple Pulse flash X-ray source which can be used to make high resolution X-ray movies of explosive and ballistic tests. The new source will allow researchers to capitalize on recent advances in very high speed cameras which allow high resolution images with many frames. DTI will extend our world-class pulsed power capabilities to this c ...

    STTR Phase I 2019 Department of DefenseAir Force
  8. Prehensor for one atmosphere diving suit

    SBC: VISHWA ROBOTICS AND AUTOMATION LLC            Topic: N13AT010

    Current atmospheric diving suits and remotely operated vehicles (ROVs) have end effectors with simply 1 DOF. This rudimentary manipulation results in excessive time spent working a problem underwater, development of task specific tools that can be operated by the pliers or acceptance that a specific job simply can't be accomplished. Vishwa Robotics proposes a teleoperated, anthropomorphic end ...

    STTR Phase I 2013 Department of DefenseNavy
  9. Progressive Model Generation for Adaptive Resilient System Software

    SBC: SECURBORATION, INC.            Topic: N13AT014

    Complex software systems are typically developed by disparate engineering teams working concurrently. At the same time, software requirements are frequently dynamic, evolving even during active development cycles. Discrepancies between how software is defined and how it is implemented at the modular level can cascade into critical system errors when modules are integrated. More troubling is that i ...

    STTR Phase I 2013 Department of DefenseNavy
  10. Ship Wake Velocity Mapping Using InstantEye MAV

    SBC: PHYSICAL SCIENCES INC.            Topic: N13AT015

    Physical Sciences Inc. (PSI) and their academic partner, West Virginia University (WVU), are pleased to propose a uniquely innovative approach to measuring the three-dimensional air wake velocity field behind ship structures and towers. The velocity data is needed to support the validation of CFD models that will ultimately be used to provide sufficient safety margins for ship aircraft operations ...

    STTR Phase I 2013 Department of DefenseNavy
US Flag An Official Website of the United States Government