You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY23 is not expected to be complete until September, 2024.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Development of Navy Wave Rich Collaboration for Command and Control

    SBC: SOLUTE            Topic: N10AT045

    The SOLUTE team’s Phase I technical approach consists primarily of a feasibility study assessing the viability of a Navy implementation of the algorithms, standards, and protocols that comprise Google's Wave technology. Of specific concern is Wave’s ability to handle varying bandwidth and DIL communications channels associated with Navy platforms. While computer science research in the field o ...

    STTR Phase I 2010 Department of DefenseNavy
  2. Naval Special Warfare (NSW) Underwater Secure Text Messaging and Diver Locater

    SBC: DESERT STAR SYSTEMS, LLC            Topic: N10AT034

    Small combat dive teams require a situational awareness capability that combines robust, low probability of detection (LPD) communication with navigation/tracking functions. The project will result in a compact terminal for underwater acoustics based communication, navigation and tracking. The Diver Messaging and Navigation Terminal (DMNT) will be rugged and easy to use, warranting a description ...

    STTR Phase I 2010 Department of DefenseNavy
  3. Metamaterial Antennas Imbedded with Ballistic Armor (PDRT10-006)

    SBC: VANGUARD SPACE TECHNOLOGIES, INC            Topic: N10AT021

    The proposed STTR will demonstrate how magnetic meta materials based antennas are ideal for integration into composite structures where the graphite composite backplanes can be integrated with dielectric ballistic protection materials that surround, yet do not interfere with the antenna. In ongoing research we have shown such antennas can approach the theoretical Gain-Bandwidth Product (GBWP) limi ...

    STTR Phase I 2010 Department of DefenseNavy
  4. Graded-Composition Refractory Coatings for Protection of Cu-Rails for Electromagnetic Launchers

    SBC: Engineered Coatings, Inc.            Topic: N10AT025

    The Navy is developing an electromagnetic (EM) launcher for long-range naval surface-fire-support. Severe operating conditions of the EM system place stringent requirements for materials, including high current and magnetic fields, high temperatures, contact with liquid metals, high stress/gouging from balloting contacts and high-speed-sliding electrical-contact with an Al armature. Engineered Coa ...

    STTR Phase I 2010 Department of DefenseNavy
  5. A Fiber-Optic-Based External Pipe Sound Pressure Level Sensing System

    SBC: INTELLIGENT FIBER OPTIC SYSTEMS CORP            Topic: N10AT016

    Intelligent Fiber Optic Systems Corporation (IFOS) and Georgia Tech propose a fiber Bragg grating (FBG) integrated sensor system capable of measuring the pipe wall "breathing mode" in order to infer the fluid-borne sound pressure level (SPL) in a pipe. The proposed new measurement technique makes it possible to externally measure the fluid-borne sound level in a noisy piping system. The state-of-a ...

    STTR Phase I 2010 Department of DefenseNavy
  6. End-to-end Naval Asset Damage Detection System

    SBC: INTELLIGENT FIBER OPTIC SYSTEMS CORP            Topic: N10AT042

    IFOS will demonstrate the feasibility of a minimalistic, yet powerful, distributed network of piezoelectric actuators and ultrasonic wave detecting fiber optic Bragg grating (FBG) sensors interrogated by a high frequency parallel processing FBG interrogator together with innovative mathematical and computational algorithms to process, store and visualize (via damage index maps) massive amounts of ...

    STTR Phase I 2010 Department of DefenseNavy
  7. Tactical 4 K Cryocooler: Study and Architecture Definition

    SBC: IRIS TECHNOLOGY CORPORATION            Topic: N10AT026

    Iris Technology, in collaboration with Georgia Tech and Raytheon, proposes to perform advanced 3D CFD modeling to guide the architecture selection for a tactical 4K Cryocooler. Iris will lead the System Design and Program Management efforts. Georgia Tech is the lead organization on the Analysis. Raytheon is providing the underlying mechanical cryocooler technology. The preliminary technical base ...

    STTR Phase I 2010 Department of DefenseNavy
  8. Miniature Electronic DFI for 5-20 Hp HFE

    SBC: JM HARWOOD, LLC            Topic: N10AT033

    JM Harwood, LLC, and UAH Propulsion Research Center propose the development of an electronic miniature Direct Fuel Injection (DFI) system for 5-20 hp heavy fuel engines. This highly integrated Very Small Injection Technology (V-SInTech) DFI system will be capable of (a) multiple injections per cycle, (b) variable injection timing, (c) variable spray penetration depth, (d) real-time closed loop mod ...

    STTR Phase I 2010 Department of DefenseNavy
  9. Adaptive Fleet Synthetic Scenario Research

    SBC: KAB LABORATORIES INC.            Topic: N10AT044

    Synthetic scenario-based training of Navy personnel in the use of Navy SIGINT/IO systems has helped to reduce training costs, and it has enabled the personnel to be trained in an environment that sufficiently approximates real-world situations that could not otherwise be accomplished within the class room. However, scenario development is highly complex and involves a great deal of human effo ...

    STTR Phase I 2010 Department of DefenseNavy
  10. High Efficiency Gain Media for Eye-Safer 1.55 µm Ultrafast Fiber Amplifiers

    SBC: Kapteyn-Murnane Laboratories, Inc.            Topic: N10AT012

    We propose to design a high average power Er:Fiber ultrafast laser system which is pumped at 14xxnm, and at the same time solve other problems related to ultrashort pulses in fiber lasers. The advantage of using 14xxnm pumping is the reduction of the standard quantum defect from 37% to 5%, thus greatly reducing the thermal load on the system, which makes it inherently more efficient. We also inten ...

    STTR Phase I 2010 Department of DefenseNavy
US Flag An Official Website of the United States Government