You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Integrated ultra-high performance electro-optic modulators

    SBC: SRICO INC            Topic: AF18AT003

    This proposed project combines advanced thin film materials engineering technology with state of the art photonic integrated circuit device concepts to develop next generation integrated electro-optic modulator devices. The proposed high speed thin film electro-optic modulator technology fills a critical need for compact, low voltage, and high analog bandwidth linear electro-optic modulators in si ...

    STTR Phase I 2018 Department of DefenseAir Force
  2. Intelligence and Intuition for Enhanced Decision Making (I2EDM)

    SBC: MODUS OPERANDI, INC.            Topic: N13AT024

    The focus of our Intelligence and Intuition for Enhanced Decision Making (I2EDM) Phase 1 research is to provide efficient and timely automated production and dissemination of information products in support of doctrinal Decision Points for the Company and below in austere environments. Operating in the Cloud, I2EDM will continuously fuse tactical information with human intuition and experience to ...

    STTR Phase I 2013 Department of DefenseNavy
  3. Laser Additive Manufacturing of Seven Thousand Series Aluminum Aircraft Components (LAM-STAAC)

    SBC: MV INNOVATIVE TECHNOLOGIES, LLC            Topic: N18AT005

    Alloys of aluminum in the 7000 series are known to have good weight, strength, and fatigue properties and are commonly used in Naval aircraft components. Recent manufacturing trends are increasingly focused on additive manufacturing (AM) methods as a way to reduce lead time, cost, and to improve part performance. Current additive manufacturing techniques are unable to fabricate parts in 7000 serie ...

    STTR Phase I 2018 Department of DefenseNavy
  4. Lightweight Magnesium Components of a Missile Body

    SBC: TERVES, LLC            Topic: MDA17T004

    Magnesium alloys have 35% lower density compared to aluminum, with improved temperature stability compared to high strength aluminum.They can also be fabricated with minimum gauge thicknesses considerably thinner than fiber composites, and are weldable, with much higher impact resistance.Traditional magnesium alloys, however, have had lower strengths than more developed aluminum alloys.Powder meta ...

    STTR Phase I 2018 Department of DefenseMissile Defense Agency
  5. Limit State Design of Composite Aerospace Structures

    SBC: CORNERSTONE RESEARCH GROUP INC            Topic: ST13A006

    Federal Aviation Administration Advisory Circular 20-107B provides guidance on the achievement of compliance with Title 14 of the Code of Federal Regulations regarding airworthiness type certification requirements for composite aircraft structures necessi

    STTR Phase I 2013 Department of DefenseDefense Advanced Research Projects Agency
  6. Low-Cost Ball/Air/Magnetic Hybrid Bearing System for Extended-Life Micro Gas Turbine Engines

    SBC: Nastec, Inc.            Topic: N10AT037

    A unique type of air lubricated thrust bearing called a Wave Bearing is proposed to assist a rolling element bearing to carry the thrust load and to improve the bearing’s life when used in a micro gas turbine engine. The Wave Bearing technology will provide improved reliability, safety and life compared to rolling element bearings used alone, as well as to allow simplification of engine design a ...

    STTR Phase I 2010 Department of DefenseNavy
  7. Low Cost Fabrication of Armor Protection Systems for Military Tactical Vehicles

    SBC: NexGen Composites LLC            Topic: A13AT021

    There is a great need and opportunity to develop lower cost manufacturing process for ceramic tile-based composite armor system for military tactical vehicles. The threat levels encountered by the military tactical vehicles, particularly due to the Improvised Explosive Devices (IED) pose an ever-increasing need for more lightweight and effective vehicle armor system at an affordable cost. A low-co ...

    STTR Phase I 2013 Department of DefenseArmy
  8. Low-cost production of ultra-low defect GaN-based power electronics

    SBC: QRONA TECHNOLOGIES LLC            Topic: N18AT004

    GaN power semiconductors offer a technological breakthrough for improving the performance of power electronics including power density, conversion efficiency, and reliability of power converters. These are the three most critical requirements for military, aerospace and many commercial applications. In this STTR program, Qrona Technologies will collaborate with the University of Central Florida to ...

    STTR Phase I 2018 Department of DefenseNavy
  9. Meaning-Aligned Record Synthesis for Training Emerging Capabilities (MARSTEC)

    SBC: SOAR TECHNOLOGY INC            Topic: N18AT003

    Operational experts collect recorded data about emerging tactics, techniques, and procedures (TTPs) from sources such as live and virtual training exercises, and numerous test and evaluation simulations. However, instructional designers cannot easily reuse the recorded data to create new training. Without sufficient access to operational experts, expert knowledge is inaccessible and fragmented, of ...

    STTR Phase I 2018 Department of DefenseNavy
  10. Mechanical Property Characterization and Modeling for Structural Mo-Si-B Alloys for High Temperature Applications

    SBC: Imaging Systems Technology, Inc.            Topic: N13AT012

    Under this STTR, Imaging Systems Technology (IST) in cooperation with Georgia Institute Technology (GIT) will develop and mature models to predict mechanical properties of refractory alloys with an eye toward tailoring these alloys for specific applications. In particular, this research will focus on addressing core aspects of Integrated Computational Materials Engineering (ICME) as it applies to ...

    STTR Phase I 2013 Department of DefenseNavy
US Flag An Official Website of the United States Government