You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY23 is not expected to be complete until September, 2024.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. High-Speed Measurements of Dynamic Flame Stabilization Processes in High-Pressure Combustion Systems

    SBC: SPECTRAL ENERGIES LLC            Topic: AF16AT13

    The Phase-II research is a natural extension and a significant advancement over the Phase-I research, which has successfully demonstrated high-speed, burst-mode, polarization-based, dual-plane, stereoscopic PIV measurements synchronized with OH-PLIF imaging of turbulent swirling combustion in a generic gas-turbine combustor with and without acoustic forcing. We propose to conduct high-speed, burst ...

    STTR Phase II 2017 Department of DefenseAir Force
  2. High-Speed Measurements of Dynamic Flame Stabilization Processes in High-Pressure Combustion Systems

    SBC: SPECTRAL ENERGIES LLC            Topic: AF16AT13

    The Phase-I effort is to demonstrate high-speed, polarization-based, burst-mode-laser-enabled, dual-plane, stereoscopic PIV (DP-stereo PIV) measurements of turbulent swirling combustion, which allow complete determination of the nine-component velocity g...

    STTR Phase I 2016 Department of DefenseAir Force
  3. High Speed Electronic Device Simulator

    SBC: TECH-X CORPORATION            Topic: AF15AT33

    The overall project objective is to develop and demonstrate a software package based on Fermi kinetics charge transport and Delaunay/Voronoi field discretization that accurately predicts semiconductor device behavior from DC up through the mm-wave and TH...

    STTR Phase II 2016 Department of DefenseAir Force
  4. High-Quality AlGaN Substrates for Optical and Electronic Applications

    SBC: KYMA TECHNOLOGIES, INC.            Topic: AF17AT024

    Kyma Technologies, the leading domestic supplier of crystalline III-N substrate materials, is teamed with leading AlGaN materials & device experts at Sandia National Laboratory, to develop high-quality AlGaN templates in Phase I and free-standing AlGaN substrates in Phase II. Understanding that the commercialization potential of AlGaN templates and substrates requires a cost-effective and diameter ...

    STTR Phase I 2017 Department of DefenseAir Force
  5. Highly-Scalable Computational-Based Engineering Algorithms for Emerging Parallel Machine Architectures

    SBC: RNET TECHNOLOGIES INC            Topic: AF10BT13

    ABSTRACT: RNET and The Ohio State University propose to use algorithmic modifications and multi-level parallelization techniques and tools to improve the scalability of the aero-line/aero-elastic coupled CFD/CSD codes relevant to the DoD/AF (e.g., CREATE/Kestrel). The optimizations will address inter-node and intra-node parallelization to better target emerging compute architectures (e.g., multi ...

    STTR Phase II 2013 Department of DefenseAir Force
  6. Highly-Resolved Wall-Shear-Stress Measurement in High Speed Flows

    SBC: INTERDISCIPLINARY CONSULTING CORP            Topic: AF14AT08

    The Interdisciplinary Consulting Corporation (IC2), in partnership with the University of Florida (UF) and Innoveering, LLC, proposes to develop an innovative precision micro-scale surface-mountable sensor for measuring local wall shear stress in [a] high speed flow field (approximately 0.8 < M < 5) to enable characterization of critical boundary layer flows in ground and flight tests in response ...

    STTR Phase II 2016 Department of DefenseAir Force
  7. High-Frequency Calibration System for Sensors Used in High-Speed Airflow Measurements

    SBC: INTERDISCIPLINARY CONSULTING CORP            Topic: AF17AT003

    The Interdisciplinary Consulting Corporation (IC2) in partnership with the University of Florida, proposes to develop and standardize a novel, high-frequency dynamic pressure sensor calibration method and system for sensors used in the measurement of high speed flows. The proposed innovation is a novel calibration method combined with modified and repurposed measurement hardware to enable calibra ...

    STTR Phase I 2017 Department of DefenseAir Force
  8. High-Fidelity Simulation of Hypersonic Weakly Ionized Plasmas with Dynamically Adaptive Mesh

    SBC: CFD RESEARCH CORPORATION            Topic: AF09BT10

    The goal of the proposed research is to develop advanced computational tool for high-fidelity simulations of hypersonic non-equilibrium plasmas. Octree adaptive Cartesian mesh will be used for automatic mesh generation and dynamic mesh adaptation to plasma properties, particularly important for hypersonic flows with strong shock waves, transient laminar and turbulent domains with large gradients o ...

    STTR Phase I 2010 Department of DefenseAir Force
  9. High Fidelity Computational Models for Aggregated Tissue Interaction in Surgical Simulations

    SBC: CFD RESEARCH CORPORATION            Topic: DHP16A001

    Surgical simulations aiming to support surgeon practices and medical education have attracted enormous research effort over the last two decades. However, the physical reality, especially on simulating aggregated tissue interaction, is still unsatisfactory. In this proposed work, an open source surgery simulation framework, SoFMIS, will be utilized and enhanced with tissue interaction models to a ...

    STTR Phase I 2016 Department of DefenseDefense Health Agency
  10. Heterogeneous Data Discovery Using Deep Neural Networks

    SBC: KickView Corporation            Topic: AF16AT12

    Improving feature extraction, event detection, and target classification in multi-sensor systems requires new mathematical methods and processing techniques. In addition, previous research and experience suggests that leveraging sensor data that has not experienced significant dimensionality reduction can preserve subtle features when processed jointly with other relevant data. However, traditiona ...

    STTR Phase I 2016 Department of DefenseAir Force
US Flag An Official Website of the United States Government