You are here
Award Data
The Award database is continually updated throughout the year. As a result, data for FY23 is not expected to be complete until September, 2024.
Download all SBIR.gov award data either with award abstracts (290MB)
or without award abstracts (65MB).
A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.
The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.
-
High Speed Spinning Scroll Expander (HiSSSE)- Organic Rankine Cycle for Increased Naval Ship Power Density and Fuel Efficiency
SBC: Air Squared, Inc. Topic: N19AT013Waste heat from Naval diesel generators provides significant opportunity to introduce organic Rankine cycles (ORC) to increase their fuel efficiency. The objective of the proposed effort is to design and demonstrate a high-speed, spinning scroll expander (HiSSSE) ORC as a power dense waste heat recovery system for diesel generators on ships. The system will leverage Air Squared’s spinning scroll ...
STTR Phase I 2019 Department of DefenseNavy -
Compact Waste Heat Recovery Power Generation System
SBC: SPECTRAL ENERGIES LLC Topic: N19AT013The STTR topic N19A-T013 seeks innovative technology to improve the power density and efficiency of propulsion and power generation devices. To address this challenge, Spectral Energies in collaboration with its academic partner Dr. Rory Roberts at Wright State University proposes to develop a compact heat recovery system based on a supercritical CO2 based Rankin Cycle. At the end of the STTR prog ...
STTR Phase I 2019 Department of DefenseNavy -
Power Dense Turbo-Compression Cooling Driven by Waste Heat
SBC: MANTEL TECHNOLOGIES INC Topic: N19AT013The U.S. Navy seeks methods to improve the fuel economy of marine diesel engines through utilization of waste heat. Low temperature engine jacket water, lubrication oil, and aftercooler air are largely untapped streams of thermal energy on these ships, but their utilization circumvents many operation challenges associated with exhaust gases. For example, variable and high exhaust gas temperatures ...
STTR Phase I 2019 Department of DefenseNavy -
GECCO: Gecko-gripper for EOD with Cavitation Cleaning Operation
SBC: VALOR ROBOTICS, LLC Topic: N19AT011The objective of the Phase I proposal is to investigate the application of controlled cavitation cleaning technology in conjunction with gecko-inspired mechanical adhesion and soft elastomeric applicators for use in non-intrusive EOD operations. This investigation requires the proof-of-concept testing and validation of a controlled cavitation cleaning mechanism, and a soft robotic gecko-inspired m ...
STTR Phase I 2019 Department of DefenseNavy -
Process to Mitigate Catastrophic Optical Damage to Quantum Cascade Lasers
SBC: IRGLARE LLC Topic: N19AT004The development of a catastrophic optical damage model for quantum cascade lasers describing instantaneous laser damage at high optical power levels is proposed. The model will be validated by comparison to experimental data. Based on obtained results, changes to laser design and laser fabrication resulting in an increased damage threshold will be implemented. The work will ultimately result into ...
STTR Phase I 2019 Department of DefenseNavy -
Unified Logging Architecture for Performance and Cybersecurity Monitoring
SBC: INNOVATIVE DEFENSE TECHNOLOGIES, LLC Topic: N19AT012In order to achieve real-time monitoring, analysis, and alerting for complex systems, a unified logging architecture must exist that can support the collection and analysis of big data. Our technical objective is to develop a unified logging architecture that supports collection, aggregation, storage, and analysis of system performance and cybersecurity logs, events, and alerts produced by Naval C ...
STTR Phase I 2019 Department of DefenseNavy -
Quench Monitoring and Control System for High-Temperature Superconducting Coils
SBC: ADVANCED CONDUCTOR TECHNOLOGIES LLC Topic: N19AT016The Navy has been developing superconducting systems, based on high-temperature superconductors (HTS), for future use on Navy ships. One of the challenges associated with superconducting magnets is the possibility of a quench, which is an event where a local hot spot develops within the superconductor that quickly spreads throughout the device, driving it into its normal and dissipative state. Sen ...
STTR Phase I 2019 Department of DefenseNavy -
Novel Development of an Intelligent Quench Detection (QD) Method for HTS Coils
SBC: TAI-YANG RESEARCH CO Topic: N19AT016Energy to Power Solutions (e2P) has teamed with quench detection (QD) expert Dr. Yuri Lvovsky (retired GE), Dr. Sastry Pamidi of the Center for Advanced Power Systems (FSU-CAPS), and American Superconductor Corporation (AMSC) to design, fabricate, and test a robust, reliable, and low cost QD system. e2P’s proposed system is a vastly different quench avoidance system that will provide multiple le ...
STTR Phase I 2019 Department of DefenseNavy -
Power-Dense Electrical Rotating Machines for Propulsion and Power Generation
SBC: CONTINUOUS SOLUTIONS Inc Topic: N19AT007The primary objective is to develop electric machine/drive topologies and power architectures that achieve the power densities required for 50% more power without the increase in weight or space requirements. In addition to PMSM-based designs, two new machine topologies will be considered. The first is a trapped flux coreless (TFC) machine that utilizes superconducting pucks made of YBCO to produc ...
STTR Phase I 2019 Department of DefenseNavy -
Atomic Triaxial Magnetometer
SBC: VESCENT PHOTONICS LLC Topic: N19AT006Vescent Photonics and MIT Lincoln Labs (MIT-LL) propose to develop a quantum-based vector magnetometer with low size, weight, power, and cost (SWaP+C) for Navy applications. The proposed system will rely on probing magnetically-sensitive, atomic-like transitions of nitrogen-vacancy (NV) centers in diamond to provide stable, high-bandwidth readout of the vector magnetic field with sub-picotesla sen ...
STTR Phase I 2019 Department of DefenseNavy