You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY23 is not expected to be complete until September, 2024.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Progressive Model Generation for Adaptive Resilient System Software

    SBC: SECURBORATION, INC.            Topic: N13AT014

    Complex software systems are typically developed by disparate engineering teams working concurrently. At the same time, software requirements are frequently dynamic, evolving even during active development cycles. Discrepancies between how software is defined and how it is implemented at the modular level can cascade into critical system errors when modules are integrated. More troubling is that i ...

    STTR Phase I 2013 Department of DefenseNavy
  2. Unified Logging Architecture for Performance and Cybersecurity Monitoring

    SBC: INNOVATIVE DEFENSE TECHNOLOGIES, LLC            Topic: N19AT012

    In order to achieve real-time monitoring, analysis, and alerting for complex systems, a unified logging architecture must exist that can support the collection and analysis of big data. Our technical objective is to develop a unified logging architecture that supports collection, aggregation, storage, and analysis of system performance and cybersecurity logs, events, and alerts produced by Naval C ...

    STTR Phase I 2019 Department of DefenseNavy
  3. Process to Mitigate Catastrophic Optical Damage to Quantum Cascade Lasers

    SBC: IRGLARE LLC            Topic: N19AT004

    The development of a catastrophic optical damage model for quantum cascade lasers describing instantaneous laser damage at high optical power levels is proposed. The model will be validated by comparison to experimental data. Based on obtained results, changes to laser design and laser fabrication resulting in an increased damage threshold will be implemented. The work will ultimately result into ...

    STTR Phase I 2019 Department of DefenseNavy
  4. Maneuver Prediction and Avoidance Logic For Unmanned Aircraft System Encounters with Non-Cooperative Air Traffic

    SBC: NUMERICA CORPORATION            Topic: N13AT003

    For Unmanned Aircraft Systems (UAS) to operate seamlessly in both the U.S. National Airspace System (NAS) and abroad, it will be crucial that they possess a sense-and-avoid (SAA) capability that can ensure safe operations among maneuvering, non-cooperative aircraft. Numerica Corporation, in partnership with Johns Hopkins University, proposes to develop a set of algorithms to model the uncertaintie ...

    STTR Phase I 2013 Department of DefenseNavy
  5. Cervical Spine Health Improvement Products

    SBC: SWITCHBOX INC            Topic: DHA18B001

    Most standard-of-care tools and techniques for evaluating neck disorders are subjective, unreliable, and do not provide actionable information for providers, payers, and organizations to deliver efficient and effective care. This lack of objective neck he

    STTR Phase I 2019 Department of DefenseDefense Health Agency
  6. Magnetoelectric Modules for Scavenging UAV Power from Electric Utility Lines

    SBC: NANOSONIC INC.            Topic: N19AT019

    NanoSonic will work with Penn State to develop, demonstrate and manufacture materials and systems to allow unmanned aerial vehicles (UAVs) to scavenge magnetic field energy from electric power lines and operate continuously in the field. NanoSonic will work with energy harvesting researcher Dr. Shashank Priya and a major US aerospace company to design, fabricate and demonstrate a prototype system ...

    STTR Phase I 2019 Department of DefenseNavy
  7. HIGH STRENGTH, WATER-FILLED CERAMIC NANOCOMPOSITE MICROCAPSULES WITH LOW PERMEABILITY FOR SELF-SEALING FUEL BLADDERS

    SBC: NANOSONIC INC.            Topic: N19BT030

    During the proposed Navy STTR program, NanoSonic and Virginia Tech will design and synthesize innovative, high strength ceramic nanocomposite microcapsules filled with > 80 volume percent water that are empirically optimized to function as readily dispersed powdered additives with long-term water retention, durability during air craft bladder production, and rupture during ballistic shock. NanoSon ...

    STTR Phase I 2019 Department of DefenseNavy
  8. Dynamic Physical/Data-Driven Models for System-Level Prognostics and Health Management

    SBC: GLOBAL STRATEGIC SOLUTIONS LLC            Topic: N10AT009

    Prognostics and health management (PHM) systems are critical for detecting impending faults and enabling a proactive decision process for maintenance or replacement of avionics systems before actual failures occur. A PHM system is essential to enhancing aircraft systems reliability and maintaining a high level of mission readiness and affordability. Current PHM advancements are focused on aircraft ...

    STTR Phase I 2010 Department of DefenseNavy
  9. Refractory Metal Coating for Electromagnetic Launcher Rails

    SBC: TDA RESEARCH, INC.            Topic: N10AT025

    Electromagnetic launchers or rail guns are a key component of the Navy’s all-electric ship of the future, but they lack the durability required for repeated firings. TDA Research and the University of Nevada, Reno (UNR) are developing a tough, durable and conductive refractory metal coating that will protect the copper alloy conductors (rails) from the extreme heat and wear conditions inside the ...

    STTR Phase I 2010 Department of DefenseNavy
  10. Compact robust testbed for cold-atom clock and sensor applications

    SBC: COLDQUANTA, INC.            Topic: N13AT018

    As strontium and other alkaline-earth metals become increasingly attractive for ultracold-atom applications, there is a growing need to develop compact, robust systems for cooling, trapping, and studying these elements. In this proposal, ColdQuanta will team with Dr. Jun Ye at JILA and the University of Colorado at Boulder to develop a portable, turn-key system that can produce, utilize, and optic ...

    STTR Phase I 2013 Department of DefenseNavy
US Flag An Official Website of the United States Government