You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY23 is not expected to be complete until September, 2024.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Novel Development of an Intelligent Quench Detection (QD) Method for HTS Coils

    SBC: TAI-YANG RESEARCH CO            Topic: N19AT016

    Energy to Power Solutions (e2P) has teamed with quench detection (QD) expert Dr. Yuri Lvovsky (retired GE), Dr. Sastry Pamidi of the Center for Advanced Power Systems (FSU-CAPS), and American Superconductor Corporation (AMSC) to design, fabricate, and test a robust, reliable, and low cost QD system. e2P’s proposed system is a vastly different quench avoidance system that will provide multiple le ...

    STTR Phase I 2019 Department of DefenseNavy
  2. Processes for Fabrication of Atomically Precise Strongly Correlated Materials

    SBC: XALLENT INC.            Topic: ST17C002

    Developing knowledge-driven nanoelectronics for military applications requires understanding the fundamental physics that governs the behavior of the underlying material. Strongly correlated materials have very desirable properties such as interfacial superconductivity, ferroelectricity, ferromagnetism, and huge magnetoresistance, which make them an ideal set of candidates to integrate with semico ...

    STTR Phase II 2019 Department of DefenseDefense Advanced Research Projects Agency
  3. Carbon nanotube coatings on electrochemical textured surfaces for advanced adsorptive baffles

    SBC: Faraday Technology, Inc.            Topic: MDA18T003

    This proposed STTR program addresses the challenge of developing advanced absorptive baffles to minimize stray and reflected light across the visible and infrared wavebands for exo-atmospheric optical sensors and seeker telescopes. To achieve this goal Faraday Technology and Pacific Northwest National Laboratory will develop electrochemically textured pyramidal surfaces with CNT black coatings as ...

    STTR Phase I 2019 Department of DefenseMissile Defense Agency
  4. Electron emitting graphene based composite coating for spacecraft charging mitigation

    SBC: Faraday Technology, Inc.            Topic: AF18AT011

    Faraday and Utah State University propose to demonstrate the feasibility of utilizing electrophoretic deposition to develop graphene features with controlled functional properties in order to address the DoD need for a spacecraft charging mitigation. Implementation of such materials in DoD mission areas is anticipated to lower costs, improve sustainability, and increase readiness. The proposed Pha ...

    STTR Phase I 2019 Department of DefenseAir Force
  5. Power-Dense Electrical Rotating Machines for Propulsion and Power Generation

    SBC: CONTINUOUS SOLUTIONS Inc            Topic: N19AT007

    The primary objective is to develop electric machine/drive topologies and power architectures that achieve the power densities required for 50% more power without the increase in weight or space requirements. In addition to PMSM-based designs, two new machine topologies will be considered. The first is a trapped flux coreless (TFC) machine that utilizes superconducting pucks made of YBCO to produc ...

    STTR Phase I 2019 Department of DefenseNavy
  6. Power Electronics Thermal Interface (PETI) with Conductive Diamond Plating

    SBC: GLOBAL CIRCUIT INNOVATIONS INC            Topic: AF19BT001

    A growing number of electronic applications within the Air Force, such as devices for power conditioning and distribution, RF power amplification, and high power lasers have been identified for increased heat transfer requirements to maintain operational temperatures at acceptable levels while increasing the performance through higher power. However, this same target research that requires increas ...

    STTR Phase I 2019 Department of DefenseAir Force
  7. W-Band RF Instrumentation

    SBC: SRICO INC            Topic: A18BT002

    W-band millimeter waves have a number of important applications, including directed energy and, more recently, 5G FR2 network development. Reliable measurements of electric fields in the W-Band, while critical to the development of these applications, have proven challenging. This proposal addresses the development of an accurate, traceable, cost effective W-band RF field strength detector. The so ...

    STTR Phase I 2019 Department of DefenseArmy
  8. Design of Easy-To-Use Structural Alloy Feedstocks for Additive Manufacturing

    SBC: ELEMENTUM 3D, INC.            Topic: A18BT003

    There is a need for easy-to-use, versatile alloys for additive manufacturing that print consistently regardless of the specific process or machine, or the metallurgical and manufacturing knowledge of the user. Such capability is especially critical for soldiers to be able to make every day items on demand in the theater of war. Toward meeting this need, recent successes developing high performance ...

    STTR Phase I 2019 Department of DefenseArmy
  9. Power Dense Turbo-Compression Cooling Driven by Waste Heat

    SBC: MANTEL TECHNOLOGIES INC            Topic: N19AT013

    The U.S. Navy seeks methods to improve the fuel economy of marine diesel engines through utilization of waste heat. Low temperature engine jacket water, lubrication oil, and aftercooler air are largely untapped streams of thermal energy on these ships, but their utilization circumvents many operation challenges associated with exhaust gases. For example, variable and high exhaust gas temperatures ...

    STTR Phase I 2019 Department of DefenseNavy
  10. Design of Flexible Materials for Aerodynamic Structures

    SBC: ATREVIDA SCIENCE INC.            Topic: AF19BT001

    The PI has worked on a design concept for a wind turbine blade with adaptive twist transformation. The design improves wind capture and reduces loading on the system drivetrain turbine by adapting the twist distribution in relation to wind speed. Structural adaptability is enabled by actuating a series of compliant segments that are mounted on a relatively rigid spar. The segments are assumed to h ...

    STTR Phase I 2019 Department of DefenseAir Force
US Flag An Official Website of the United States Government