You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Advanced Materials for the Design of Lightweight JP5/JP8/DS2 Fueled Engines for Unmanned Aerial Vehicles (UAVs)

    SBC: Northwest Uld, Inc.            Topic: N10AT001

    Northwest UAV Propulsion Systems proposes using our purpose built heavy fuel engine designed and built in the USA for small unmanned aerial systems in the tier 2 & 3 class. We will be adding a lightweight ceramic material set combined with FEA (Finite Element Analysis) and heavy fuel atomizer (IRAD Project) to create a lightweight engine for a SUAS or STUAS class UAVs. The Ceramic material set is ...

    STTR Phase I 2010 Department of DefenseNavy
  2. Metal-blacks for plasmonic enhancement of solar-cell efficiency

    SBC: Physical Engineering Corporation            Topic: AF09BT39

    This Phase I STTR proposal will demonstrate nanostructured “metal-black” coatings to enhance absorption by thin film solar cells. The problem is that silicon has low absorption due to its indirect gap. The opportunity is that nano-scale metallic scattering centers increase the effective optical path length and enhance the solar electric-field strength in thin-film solar cells, leading to more ...

    STTR Phase I 2010 Department of DefenseAir Force
  3. Modeling Leadership Dynamics in Multinational Environments

    SBC: MacroCognition, LLC            Topic: ST092002

    We propose to develop a computational model of leadership designed to capture complex variables including cultural differences in leadership requirements along with task differences, primarily ill-defined goals, which pose leadership challenges. Rather than avoiding these kinds of complexity and developing a computational model that is unlikely to scale up, we believe there is more to be gained b ...

    STTR Phase I 2010 Department of DefenseDefense Advanced Research Projects Agency
  4. On-Chip Passive Phase-Locking for High Coherent Power, Mid-IR Quantum Cascade Lasers

    SBC: INTRABAND, LLC            Topic: A10AT007

    The technical objectives of this proposal are: 1) the design of 8 micron-emitting active-photonic-crystal (APC) quantum-cascade (QC) lasers by using passive phase-locking in a monolithic structure in order to achieve multiwatt-range, diffraction-limited powers; and 2) the development of the key fabrication steps for realizing the proposed APC QC laser. Deep-well (DW) QC lasers will be used in the ...

    STTR Phase I 2010 Department of DefenseArmy
  5. Fast Updatable Large-area Holographic Display

    SBC: NEW SPAN OPTO-TECHNOLOGY, INC.            Topic: AF08T001

    Two-dimensional (2D) visualization techniques have limit capacity to achieve understanding of full dimensionality of the battlefield. Rewritable 3D holographic storage is promising for updatable 3D display applications. In Phase I, New Span Opto-Technology has demonstrated novel concepts of both holographic recording technique and recording material system without the use of high voltage. We have ...

    STTR Phase II 2010 Department of DefenseAir Force
  6. ULTRAFAST DIAGNOSTICS FOR NOVEL ENERGETIC MATERIALS IN ROCKET ENGINE ENVIRONMENTS

    SBC: SPECTRAL ENERGIES LLC            Topic: AF08T010

    The objectives of this Phase-II research effort is focused on transitioning noninvasive diagnostic techniques based on ultrafast lasers for characterizing nanoenergetic materials and their performance in rocket engine environments. Through the use of ultrafast laser imaging and spectroscopy, it is possible to isolate and characterize each physical process from initiation through energy release an ...

    STTR Phase II 2010 Department of DefenseAir Force
  7. Minority carrier lifetime measurements in Strained Layer Superlattices (SLS)

    SBC: Power Photonic            Topic: A09AT005

    We propose the development of a system for measuring the minority carrier lifetime in strained layer superlattices (SLS). Mid wave infrared (MWIR) and long wave infrared (LWIR) detectors based on SLS technology show promise due to the large and inexpensive focal plane arrays that can be fabricated. The devices are held back though, by excessive dark current, which is related to a poor minority car ...

    STTR Phase II 2010 Department of DefenseArmy
  8. OPTOFLUIDIC WAVEGUIDES FOR RECONFIGURABLE PHOTONIC SYSTEMS

    SBC: Illuminaria LLC            Topic: AF08T024

    In this Phase I STTR, Illuminaria, in collaboration with Professor Erickson’s Laboratory at Cornell University, designed and developed a practical liquid based reconfigurable photonic device photonic switch using low voltage microfluidic pumps and microfabricated optofluidic waveguides. Briefly, the basic element of this approach comprises a stream of high index of refraction liquid (core) micr ...

    STTR Phase II 2010 Department of DefenseAir Force
  9. Adaptive Quantum-Dot Photodetectors with Bias-Tunable Barriers

    SBC: ESENSORS INC.            Topic: AF08BT02

    Esensors, with SUNY at Buffalo and SUNY at Albany as a subcontractor, will simulate, fabricate, experimentally investigate, evaluate, and deliver aprototype of a new adaptive IR photodetector based on advanced quantum dot (QD) structures. The detector’s operating principle is based on a new concept of the photoelectron lifetime tunable via adjustable potential barriers in QD structures. The phot ...

    STTR Phase II 2010 Department of DefenseAir Force
  10. Antenna design by genetic algorithms

    SBC: EMAG TECHNOLOGIES INC.            Topic: N08T031

    The overall objective of this STTR project is to develop a comprehensive CAD environment for design and optimization of antennas and arrays on complex platforms such as topsides of naval surface combatants. EMAG Technologies Inc. has teamed up with the University of Michigan to develop a novel solution for placement of antennas on such platforms using a number of new physics-based genetic algorith ...

    STTR Phase II 2010 Department of DefenseNavy
US Flag An Official Website of the United States Government