You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY22 is not expected to be complete until September, 2023.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. Design of Flexible Materials for Aerodynamic Structures

    SBC: ATREVIDA SCIENCE INC.            Topic: AF19BT001

    The PI has worked on a design concept for a wind turbine blade with adaptive twist transformation. The design improves wind capture and reduces loading on the system drivetrain turbine by adapting the twist distribution in relation to wind speed. Structural adaptability is enabled by actuating a series of compliant segments that are mounted on a relatively rigid spar. The segments are assumed to h ...

    STTR Phase I 2019 Department of DefenseAir Force
  2. Development for Radiation Hardened Applications of Advanced Electronics Materials, Processes, and Devices

    SBC: RNET TECHNOLOGIES INC            Topic: MDA09T006

    The Missile Defense Agency (MDA) seeks technical investigations related to the development and application of advanced electronic materials, processes, and devices to meet its need for radiation hardened, high performance electronics for critical space and missile applications. With the advent of smaller transistor dimensions and reductions in price per bit, significant changes in materials and pr ...

    STTR Phase I 2010 Department of DefenseMissile Defense Agency
  3. Development lightmap rendering technology to advance infrared simulation capabilities for training applications

    SBC: Cornerstone Software Solutions, Inc            Topic: AF17AT012

    Recent technology advances have enabled the simulation community to achieve greater realism in virtual training environments, including physics-based simulated sensor views. As new methods for sensor view generation are developed, the lack of readily available supporting data to populate these specialized techniques limits their implementation. Currently the capability is not available to efficien ...

    STTR Phase II 2018 Department of DefenseAir Force
  4. Development of a Computational Method for Prediction of After-Burning Effect

    SBC: BUSA Engineering Consulting            Topic: N10AT002

    This proposal is being submitted in response to the solicitation topic N10A-T002 (Development of a Computational Method for Prediction of After Burning Effect) by BUSA Engineering Consulting (Dr. Jianghui Chao) in collaboration with University of Florida (PI: Prof. S. Balachandar). The overall objective of the proposed effort is to contribute to national defense and security by advancing the state ...

    STTR Phase I 2010 Department of DefenseNavy
  5. Development of a Micro-glider for Oceanographic Air-Sea Interaction Sampling

    SBC: Tusaire Incorporated            Topic: N14AT020

    Advanced effective Micro-glider development will be conceived under this Phase I effort.

    STTR Phase I 2014 Department of DefenseNavy
  6. Development of a Rapidly Deployable Scaled Fighter for Aeroelastic Research

    SBC: MAINSTREAM ENGINEERING CORP            Topic: AF12BT12

    ABSTRACT: Experimental testing of dynamic models has been performed for more than 50 years and a wealth of data exists for individual models. However, this data is often either restricted as proprietary or is not suitable for CSE tool validation as a result of incomplete model or test information. Mainstream Engineering proposes to design, fabricate, and test a scaled fighter for aeroelastic ...

    STTR Phase I 2013 Department of DefenseAir Force
  7. Development of Characterization of Failure Modes for Mechanical Components

    SBC: Thornton Tomasetti, Inc.            Topic: N14AT011

    This proposal describes a new process to facilitate the shock qualification of submarine components, taking advantage of the similarities between readily observable design features of these components, and correlating them to success or failure in Navy shock qualification tests. To realize this Design Feature Similarity (DFS) approach, we will develop a set of criteria based on this type of readil ...

    STTR Phase I 2014 Department of DefenseNavy
  8. Development of Multi-Frequency Multi-Scale Radiation Transport Modeling

    SBC: Prism Computational Sciences, Inc.            Topic: AF08T020

    The objective of this proposal is to develop advanced radiation transport modeling techniques that accurately and efficiently treat transport in media having widely varying optical properties; in particular, hot gases and plasmas with optical depths ranging from the optically thin to the optically thick regimes. We will develop a hybrid diffusion-Monte Carlo (HDMC) model that efficiently transpor ...

    STTR Phase II 2010 Department of DefenseAir Force
  9. Development of Next-Generation Composite Flywheel Design for Shock and Vibration Tolerant, High Density Rotating Energy Storage

    SBC: PowerTHRU            Topic: N13AT022

    PowerTHRU Corporation proposes to meet or exceed the requirements of this STTR by utilizing its extensive experience in carbon fiber based high speed flywheel systems, to design and build a 100K RPM flywheel system. Unlike steel flywheel technologies that are limited by the speed in which they can safely rotate, PowerTHRU has already demonstrated that 50,000 RPM carbon fiber flywheels can be desig ...

    STTR Phase I 2013 Department of DefenseNavy
  10. Development of Next-Generation Composite Flywheel Design for Shock and Vibration Tolerant, High Density Rotating Energy Storage

    SBC: MOHAWK INNOVATIVE TECHNOLOGY INC            Topic: N13AT022

    The overall objective of the Phase I and Phase II proposed effort is to design and demonstrate the ability to develop a high-speed shock tolerant composite flywheel energy storage system (FESS) using a low cost manufacturing process. The Phase I tradeoff design studies will assess the FESS size, operating speeds and material requirements needed to achieve the energy density levels and charge/disch ...

    STTR Phase I 2013 Department of DefenseNavy
US Flag An Official Website of the United States Government