You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. High Energy Density Nanocomposite Based on Tailored Surface Chemistry

    SBC: TPL, INC            Topic: AF09BT05

    High energy density capacitors are required for practical implementation of GW-class pulse power loads. In response to this need, TPL has established unique dielectric and capacitor capabilities. Revolutionary materials, designs and manufacturing process have been developed for power sources that have potential for an order of magnitude reduction in mass and volume relative to current commercial ...

    STTR Phase I 2010 Department of DefenseAir Force
  2. High Energy, Safe, and Long-Life Next Generation Batteries Using Liquefied Gas Electrolytes

    SBC: SOUTH 8 TECHNOLOGIES, INC.            Topic: AF19AT014

    The team at South 8 Technologies is the first to develop a novel and patented Liquefied Gas Electrolyte chemistry for rechargeable lithium metal batteries which meets these Air Force requirements. The proposed non-hazardous chemistry has already demonstrated world-record performance on the lithium metal anode (99.9% plating/stripping efficiency over hundreds of cycles) while maintaining high perfo ...

    STTR Phase I 2019 Department of DefenseAir Force
  3. Higher Order Mesh Generation for Simulation of Complex Systems

    SBC: HYPERCOMP INC            Topic: AF14AT07

    In this program, HyPerComp and University of Michigan have teamedtogether to develop a high-order grid generator for Euler and viscousmeshes. The grid generator is based on HyPerComps successful generalpurpose CAD2Mesh software and is being integrated with HyPerCompsHDphysics and U. Michigans XFlow DG high-order solvers. High-order gridgeneration methods are being implemented to accurately capture ...

    STTR Phase II 2016 Department of DefenseAir Force
  4. High-Fidelity Simulation of Hypersonic Weakly Ionized Plasmas with Dynamically Adaptive Mesh

    SBC: CFD RESEARCH CORPORATION            Topic: AF09BT10

    The goal of the proposed research is to develop advanced computational tool for high-fidelity simulations of hypersonic non-equilibrium plasmas. Octree adaptive Cartesian mesh will be used for automatic mesh generation and dynamic mesh adaptation to plasma properties, particularly important for hypersonic flows with strong shock waves, transient laminar and turbulent domains with large gradients o ...

    STTR Phase I 2010 Department of DefenseAir Force
  5. Highly-mobile Autonomous Rapidly Relocatable Integrated Electro-optical Resources (HARRIER)

    SBC: EXOANALYTIC SOLUTIONS INC            Topic: AF16AT05

    ExoAnalytic Solutions, teamed with Texas A&M University, will develop Highly-mobile Autonomous Rapidly Relocatable Integrated Electro-optical Resources (HARRIER) with the goal being to design and demonstrate tracking of resident space objects (RSOs) in n...

    STTR Phase I 2016 Department of DefenseAir Force
  6. Highly-Resolved Wall-Shear-Stress Measurement in High Speed Flows

    SBC: INTERDISCIPLINARY CONSULTING CORP            Topic: AF14AT08

    The Interdisciplinary Consulting Corporation (IC2), in partnership with the University of Florida (UF) and Innoveering, LLC, proposes to develop an innovative precision micro-scale surface-mountable sensor for measuring local wall shear stress in [a] high speed flow field (approximately 0.8 < M < 5) to enable characterization of critical boundary layer flows in ground and flight tests in response ...

    STTR Phase II 2016 Department of DefenseAir Force
  7. High-order modeling of applied multi-physics phenomena

    SBC: HYPERCOMP INC            Topic: AF08T023

    The gap between research in numerical methods and popular commercial solvers in CFD and related areas has been gradually widening in the recent past, particularly in the realm of high order accurate algorithms. At HyPerComp we are advancing a suite of high order codes based on the discontinuous Galerkin (DG) technique that can be used in electromagnetics, fluid mechanics, MHD and radiative heat tr ...

    STTR Phase II 2010 Department of DefenseAir Force
  8. High Performance THz Detector Arrays Using Planar Metamaterial Absorbers

    SBC: DOLCE Technologies, LLC            Topic: AF09BT33

    DOLCE Technologies, LLC, in collaboration with Professor Rick Averitt’s research group at Boston University and Eric Shaner’s group at Sandia National Laboratories, will develop and deliver a high performance room-temperature Terahertz detector array solution based on metamaterial absorbers integrated with bi-material cantilevers. The metamaterial approach is frequency scalable and can operat ...

    STTR Phase I 2010 Department of DefenseAir Force
  9. High Precision Remote Cardiopulmonary Monitoring through combined iPPG and Low Power Radar

    SBC: Cardiac Motion, LLC            Topic: AF19AT003

    Vital sign, such as respiration rate and heart rate, provide important indications of the physiological and mental conditions of an Airman. Being able to understand the physiological and mental conditions of an operator is therefore of vital importance to improving the efficiency and efficacy of future Air Force operations. Current state-of-the-practice in continuous cardiopulmonary vital sign mon ...

    STTR Phase I 2019 Department of DefenseAir Force
  10. High-Sensitivity Monolithic Silicon CMOS APD and ROIC

    SBC: FREEDOM PHOTONICS LLC            Topic: AF14AT13

    This work will focus on the development of monolithic SWIR focal plane array technologies using CMOS or CMOS compatible fabrication technology. This will be realized on a Silicon substrate and incorporate APD+TIA arrays and be scalable to Megapixel arrays and coherent receiver operation for capture of the full optical wavefront vector information.

    STTR Phase II 2016 Department of DefenseAir Force
US Flag An Official Website of the United States Government