You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Decision Making under Uncertainty

    SBC: GCAS, Inc.            Topic: MDA13T001

    Our proposed second order uncertainty (SOU) product is a decision making software solution that addresses the problem of providing accurate and precisely defined decision courses of action (COAs) of complex, time-constrained problems in a fraction of the time required by alternative methods striving to achieve the same level of precision. Complex decision situations can deal with large volume of ...

    STTR Phase II 2016 Department of DefenseMissile Defense Agency
  2. In-Mask Sensors for Physiological Investigation of Respiratory Exhalation- INSPIRE

    SBC: MAKEL ENGINEERING, INC.            Topic: DHP16C002

    Makel Engineering, Inc. and Sandia National Laboratories propose to demonstrate an advanced multi-modal sensor system suitable for in-situ analysis of exhaled VOCs for pilots, divers and field patients. Our proposed system will combine a micro-gas chromatograph (GC) and miniature ion mobility spectrometer (IMS) for detection of trace amounts of exhaled breath VOCs with miniature solid state sensor ...

    STTR Phase I 2017 Department of DefenseDefense Health Agency
  3. Mask integrated Volatile Organic Compound (VOC) sensor for real-time warfighter physiological status monitoring in extreme and toxic environments

    SBC: BAYSPEC, INC.            Topic: DHP16C002

    BaySpec Inc., in collaboration with Pacific Northwest National Laboratory, proposes to develop an innovative orthogonal sensor systemthat would be able to detect, identify and quantify the inorganic components of breathing mixes, (i.e., nitrogen, oxygen, carbon dioxide, argon, helium, and water vapor), as well as individual detectable VOCs within the exhaled breath in real-time. The Phase I resear ...

    STTR Phase I 2017 Department of DefenseDefense Health Agency
  4. Multimodal imaging system for burn injury assessment

    SBC: UTOPIACOMPRESSION,CORPORATION            Topic: DHP16C005

    The goal of this STTR effort is to design a portable, multimodal, non-contact imaging system for burn depth diagnosis and tracking of wound healing. UC and Vanderbilt University will build upon our previous efforts demonstrated via porcine model studies to combine results from structural B-mode optical coherence tomography (OCT) images and functional data (pulse speckle imaging- PSI) to classify d ...

    STTR Phase I 2017 Department of DefenseDefense Health Agency
  5. Bonded Joint Analysis Method

    SBC: M4 ENGINEERING, INC.            Topic: N12AT004

    During Phase I and Phase II, M4 Engineering, Inc. and Sandia National Laboratories have created a unique bonded joint analysis methodology and associated software. During Phase II.5, the developed techniques will be further enhanced and a fully functional commercial analysis code (SIMULIA/Abaqus) plug-in will be created. The software plug-in will make the advanced technology accessible to all leve ...

    STTR Phase II 2016 Department of DefenseNavy
  6. Lightweight, Stable Optical Bench with Integrated Vibration Attenuation

    SBC: SAN DIEGO COMPOSITES, INC.            Topic: MDA13T007

    The goal of this program is to design a lightweight optical bench capable of remaining stable under temperature and moisture changes, while isolating the precision optical array from vibrations such as engine noise and air turbulence. By integrating a customizable periodic stack in the bench, vibrations are attenuated more effectively than commercially available mounts. Additionally, the periodic ...

    STTR Phase II 2016 Department of DefenseMissile Defense Agency
  7. High Gain, High Power PCSS with Integrated Monolithic Optical Trigger

    SBC: NESS ENGINEERING, INC.            Topic: A14AT004

    The objective of this Phase II proposal is to continue the development of a Photoconductive Semiconductor Switch (PCSS) with an integrated optical trigger that can switch at least 30 kV, 1 kA, 20 ns pulses with jitter 108 shots. Ness Engineering, Inc. (NEI) and Texas Tech University (TTU) propose to utilize wide bandgap materials to demonstrate lock-on switching and allow much less optical trigger ...

    STTR Phase II 2016 Department of DefenseArmy
  8. Parallel Two-Electron Reduced Density Matrix Based Electronic Structure Software for Highly Correlated Molecules and Materials

    SBC: Q-CHEM INC            Topic: A14AT013

    Variational two-electron reduced-density-matrix (v2RDM) methods can provide a reference-independent description of the electronic structure of many-electron systems that naturally captures multireference correlation effects. These methods offer one of the few possible routes to performing the large-active-space computations that are necessary for the qualitative description of strongly-correlated ...

    STTR Phase II 2016 Department of DefenseArmy
  9. Development of a Micro-glider for Oceanographic Air-Sea Interaction Sampling

    SBC: MRV SYSTEMS LLC            Topic: N14AT020

    This proposal is a collaborative effort between MRV Systems and the Woods Hole Oceanographic Institution. The goal is to develop a new, small, inexpensive autonomous vehicle to investigate mixed layer dynamics and turbulent mixing. The preliminary Phase I design, a Diagonally Operating Platform (DOP), is a profiling float with moveable fins. DOP will turn toward an intended direction within a few ...

    STTR Phase II 2016 Department of DefenseNavy
  10. Electronically Tunable High-Power Infrared Lasers for Standoff Detection Applications

    SBC: Pranalytica, Inc.            Topic: A14AT015

    In response to the Army STTR Topic A14A-T015 solicitation for tunable high-power LWIR lasers for standoff detection applications, Pranalytica proposed to develop a compact, rugged and highly reliable wavelength tunable quantum cascade laser (QCL) module delivering over 5W of peak power and over 0.5W of average power in the spectral region spanning from 7 to 11m. The proposed approach is based on a ...

    STTR Phase II 2016 Department of DefenseArmy
US Flag An Official Website of the United States Government