You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Coupled Multi-physics Analysis and Design Optimization of nozzles (COMANDO)

    SBC: Intelligent Automation, Inc.            Topic: N14AT005

    The US Navy faces daunting energy challenges that will further increase in severity, given the ever-increasing global demand for energy, diminishing energy supplies and demand for enhanced environmental stewardship. Additionally, noise is an important issue for the Navy due to the adverse effect it has on personnel and communities around naval air bases and training sites. Military combat aircraft ...

    STTR Phase II 2015 Department of DefenseNavy
  2. Conjugate heat transfer for LES of gas turbine engines

    SBC: CASCADE TECHNOLOGIES INC            Topic: N19BT027

    Current design tools for gas turbine engines invoke a variety of simplifying assumptions to estimate heat transfer to solid/metal engine components (e.g., isothermal boundary conditions). These approximations are often not valid, result in inaccurate predictions of heat transfer, and ultimately compromise the thermal integrity of propulsion and power systems. Wall-modeled large eddy simulation (WM ...

    STTR Phase II 2020 Department of DefenseNavy
  3. Conformal Additive Cellular Heat Exchanger Technology (CACHET)

    SBC: TECHNOLOGY ASSESSMENT & TRANSFER, INC            Topic: N15AT019

    Technology Assessment & Transfer, Inc. and subcontractors propose novel, high performance additive manufactured (AM) heat exchangers for military systems. The AM process will allow for conformal, lightweight designs that optimize use of available space. Design and modeling efforts in Phase I will identify enhanced heat transfer surfaces compatible with, and made possible by, an AM fabrication appr ...

    STTR Phase I 2015 Department of DefenseNavy
  4. Computational Methods for Dynamic Scene Reconstruction

    SBC: ROBOTIC RESEARCH OPCO, LLC            Topic: N16AT017

    Reconstruction of dynamic scenes is at the limits of the state of the art. It is still challenging to accurately reconstruct models in static scenes. Dynamic scenes add a list of challenges that further complicate the problem:separating the dynamic objects from the motion created by the camera motionMorphological changes to the dynamic object itself. Not only is the system moving, but it is actual ...

    STTR Phase I 2016 Department of DefenseNavy
  5. Comprehensive Surf Zone Modeling Tool

    SBC: ARETE ASSOCIATES            Topic: N19AT010

    The objective of this project is to advance the capabilities of the Coastal Battlefield Reconnaissance and Analysis (COBRA) system by creating a Surf Zone Modelling Tool (SZT) that can create realistic synthetic imagery of the surf zone (SZ). Through the use of this synthetic imagery the COBRA Program will be enabled to inform concept of operations (CONOPS) in unfamiliar environments as well as mo ...

    STTR Phase II 2020 Department of DefenseNavy
  6. Compact robust testbed for cold-atom clock and sensor applications

    SBC: COLDQUANTA, INC.            Topic: N13AT018

    Our goal in this Phase II effort is to construct and test a compact, robust testbed for generating laser-cooled strontium atoms on a mobile platform. The focus of the Phase I effort was designing and fabricating an ovenized strontium source that also serves as a 2D+ MOT cell. In Phase II, we will integrate the strontium source into an all-glass-and-silicon vacuum system maintained by a miniature i ...

    STTR Phase II 2015 Department of DefenseNavy
  7. Compact Air Compressor for Aircraft Active Flow Control

    SBC: CANDENT TECHNOLOGIES INCORPORATED            Topic: N21AT017

    Active Flow Control (AFC) systems require a compressed air source.  Candent is proposing to use its extensive turbomachinery experience and technology to design a high efficiency air compressor with proper flow and pressure ratio to meet the STTR requirements, including expected operational environments (ambient air temperature and pressure, sand and dirt). Candent will utilize its advanced compr ...

    STTR Phase I 2021 Department of DefenseNavy
  8. Bounding generalization risk for Deep Neural Networks

    SBC: EULER SCIENTIFIC            Topic: NGA20A001

    Deep Neural Networks have become ubiquitous in the modern analysis of voluminous datasets with geometric symmetries. In the field of Particle Physics, experiments such as DUNE require the detection of particle signatures interacting within the detector, with analyses of over a billion 3D event images per channel each year; with typical setups containing over 150,000 different channels.  In an ...

    STTR Phase I 2020 Department of DefenseNational Geospatial-Intelligence Agency
  9. Bonded Joint Analysis Method

    SBC: M4 ENGINEERING, INC.            Topic: N12AT004

    During Phase I and Phase II, M4 Engineering, Inc. and Sandia National Laboratories have created a unique bonded joint analysis methodology and associated software. During Phase II.5, the developed techniques will be further enhanced and a fully functional commercial analysis code (SIMULIA/Abaqus) plug-in will be created. The software plug-in will make the advanced technology accessible to all leve ...

    STTR Phase II 2016 Department of DefenseNavy
  10. Back Channel for LVC Training

    SBC: TOYON RESEARCH CORPORATION            Topic: N20AT024

    To support Navy Live, Virtual, and Constructive (LVC) training for surface fleets during periods of long transit, the Navy would like to consider alternative communication paths that can link shore based trainers and simulation capabilities with trainers and training systems afloat. To support full spectrum training during the training events, there is a desire to selectively turn off communicatio ...

    STTR Phase I 2020 Department of DefenseNavy
US Flag An Official Website of the United States Government