You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Plasmonic MEMS Sensor Array

    SBC: Five Stones Research Corporation            Topic: A10AT002

    Sensor development researchers and engineers have perpetually sought novel methods to reduce sensor size and improve performance. Continued miniaturization of sensors through micromachining has enabled novel applications and introduced new paradigms for engineered systems to interact with the world. The challenge has always been to improve performance while continually reducing size. In the cur ...

    STTR Phase I 2010 Department of DefenseArmy
  2. Modeling Leadership Dynamics in Multinational Environments

    SBC: MacroCognition, LLC            Topic: ST092002

    We propose to develop a computational model of leadership designed to capture complex variables including cultural differences in leadership requirements along with task differences, primarily ill-defined goals, which pose leadership challenges. Rather than avoiding these kinds of complexity and developing a computational model that is unlikely to scale up, we believe there is more to be gained b ...

    STTR Phase I 2010 Department of DefenseDefense Advanced Research Projects Agency
  3. Enhanced Carbon Nanotube Ultracapacitors

    SBC: SCIENTIC INC            Topic: T601

    The proposed innovation utilizes carbon nanotubes (CNTs) coated with pseudo-capacitive MnO2 material as nano-composite electrode and ionic electrolyte for the construction of ultracapacitors. This novel approach of using nano-structured CNTs architectures provides high surface area of attachment of MnO2 nano-particles to maximize the charge efficiency and power capacity and to reduce series resist ...

    STTR Phase I 2010 National Aeronautics and Space Administration
  4. Wide Bandgap Nanostructured Space Photovoltaics

    SBC: Firefly Technologies            Topic: T3

    Firefly, in collaboration with Rochester Institute of Technology, proposes an STTR program for the development of a wide-bandgap GaP-based space solar cell capable of efficient operation at temperatures above 300oC. Efficiency enhancement will be achieved by the introduction of InGaP quantum wells within the active region of the wide-gap base material. The introduction of these nanoscale features ...

    STTR Phase I 2010 National Aeronautics and Space Administration
  5. Nanowire Photovoltaic Devices

    SBC: Firefly Technologies            Topic: T3

    Firefly, in collaboration with Rochester Institute of Technology, proposes an STTR program for the development of a space solar cell having record efficiency exceeding 40% (AM0) by the introduction of nanowires within the active region of the current limiting sub-cell. The introduction of these nanoscale features will enable realization of an intermediate band solar cell (IBSC), while simultaneous ...

    STTR Phase I 2010 National Aeronautics and Space Administration
  6. STTR Phase I: Low Cost, High Efficiency Photovoltaics

    SBC: Ampulse Corporation            Topic: MM

    This Small Business Technology Transfer (STTR) Phase I project aims to develop roll-to-roll processing of highly efficient, thin film photovoltaics on inexpensive polycrystalline substrates. The innovation lies in an architecture that yields near-single-crystalline thin films even on polycrystalline substrates. This innovation will be combined with the benefits of hot wire chemical vapor deposit ...

    STTR Phase I 2010 National Science Foundation
  7. Efficient plasma synthesis of high-quality graphene

    SBC: APS LLC            Topic: NM

    This Small Business Technology Transfer (STTR) Phase I project aims to develop a highly-efficient and cost-effective plasma-based method for graphene mass production. The approach is to utilize unique properties of magnetically controlled arc discharge to couple the plasma production of carbon species and the synthesis of graphene. The broader/commercial impact of this project will be the potenti ...

    STTR Phase I 2010 National Science Foundation
  8. STTR Phase I: Up-Cycling: Waste Acid for Green Products

    SBC: Clear Carbon Innovations            Topic: MM

    This STTR Phase I project will develop a process to produce silica products from the waste stream of a patent pending activated carbon manufacturing process (carbonxt process). The project focuses on using the silica for Silica-Titania Composites but would also take into account markets that employ precipitated or gel silica which would have differing properties than the silica used in Silica-Tit ...

    STTR Phase I 2010 National Science Foundation
  9. STTR Phase I: Low-cost naostructured anti-reflection coatings for solar energy applications

    SBC: CSD Nano            Topic: MM

    This Small Business Technology Transfer (STTR) Phase I project aims to fabricate anti-reflective coatings (ARC) for solar energy applications. The approach is to use a convective and evaporation-induced assembly to deposit organized nanostructures and create sub-wavelength quasi repeating structures at lower cost than the repeating structures from photolithography. In this project, a Microreacto ...

    STTR Phase I 2010 National Science Foundation
  10. STTR Phase I:Novel Nanostructured Substrates for Surface Enhanced Raman Spectroscopy (SERS)

    SBC: LXD            Topic: MM

    This Small Business Technology Transfer Phase I project will develop a new type of nanostructured substrate for applications in arsenide detection using surface enhanced Raman spectroscopy (SERS). Arsenic is a well known toxic chemical which exists in both nature and industrial processes, and its detection and monitoring at very low concentration is highly desired. SERS, which relies on Raman sig ...

    STTR Phase I 2010 National Science Foundation
US Flag An Official Website of the United States Government