You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. High Dynamic Range CMOS Laser Threat Sensor

    SBC: Optra, Inc.            Topic: N13AT027

    The proliferation of laser based weapons systems has led to the need for laser threat sensor systems that operate over wide spectral range from the visible to infrared and provide sufficient dynamic range to measure the irradiance levels seen in practice. OPTRA, Inc. proposes a solution based on the complementary combination of CMOS readout integrated circuitry and diffractive optics to provide th ...

    STTR Phase I 2013 Department of DefenseNavy
  2. Intelligence and Intuition for Enhanced Decision Making (I2EDM)

    SBC: MODUS OPERANDI, INC.            Topic: N13AT024

    The focus of our Intelligence and Intuition for Enhanced Decision Making (I2EDM) Phase 1 research is to provide efficient and timely automated production and dissemination of information products in support of doctrinal Decision Points for the Company and below in austere environments. Operating in the Cloud, I2EDM will continuously fuse tactical information with human intuition and experience to ...

    STTR Phase I 2013 Department of DefenseNavy
  3. A Rapid Optical Approach to Quantitative Composite Bond Quality Assessment

    SBC: SPECTRAL SCIENCES, INC            Topic: N13AT011

    Composite materials are widely used in aircraft to reduce weight and cost, improve structural performance, and boost fuel efficiency. However, composites are susceptible to adhesive bond quality issues, including kissing bonds which may occur because of initial fabrication or service related issues. Detection of such weakened bonds requires an easily used detection approach to routinely monitor co ...

    STTR Phase I 2013 Department of DefenseNavy
  4. Compact, cold-atom clock for Navy field use

    SBC: VESCENT TECHNOLOGIES INC.            Topic: N13AT018

    Vescent Photonics proposes to develop a compact laser system and integrate it with a cold-atom micro primary standard developed under the DARPA IMPACT program. In phase I we will investigate performance enhancements resulting from immobilizing the cold-atom sample with an optical lattice formed from an optical field whose wavelength is chosen to minimize the differential light shifts between the s ...

    STTR Phase I 2013 Department of DefenseNavy
  5. Solid-State Green Laser

    SBC: Q-PEAK, INCORPORATED            Topic: N13AT023

    Green laser sources are important in advanced naval mine detection as this wavelength has good penetration though seawater. Mine detection programs such as the Coastal Battlefield Reconnaissance and Analysis (COBRA) system and the Airborne Laser Mine Detection System (ALMDS) currently use frequency-doubled 1-µm lasers as the laser source. The generation of green laser light via frequency doubling ...

    STTR Phase I 2013 Department of DefenseNavy
  6. LEARNING-BASED APPROACH FOR RELEVANT DATA EXTRACTION (LARDE)

    SBC: ROBOTIC RESEARCH OPCO, LLC            Topic: N13AT016

    Autonomous systems continue to be outfitted with larger amounts of sensors that are capable of collecting extremely large amounts of data over the course of a mission. Even autonomous systems with high storage capacities can run into storage limitations when burdened with large amounts of sensor data over long mission durations. This proposal will develop a Learning-based Approach for Relevant Dat ...

    STTR Phase I 2013 Department of DefenseNavy
  7. Light-Weight Atmospheric Diving Suit

    SBC: MIDE TECHNOLOGY CORP            Topic: N13AT029

    The Navy is seeking a new light-weight Atmospheric Diving Suit (ADS) design. This suit must be less than 400 lbs; at this weight a diver will be able to self-propel using his legs and fins. The system must ensure the divers safety at a working depth of 1000 ft of sea-water; protecting the body from the high external pressure at depth, while providing a sustainable 1 ATM internal pressure. Mide in ...

    STTR Phase I 2013 Department of DefenseNavy
  8. Hybrid, Ultra-High-Speed, High Efficiency, Power Dense, Electronically Controlled Energy Conversion Unit for Ship Systems, Unmanned Vehicles, and Robo

    SBC: ELECTRIC DRIVETRAIN TECHNOLOGIES LLC            Topic: N13AT028

    The Navy seeks to develop new, innovative motor/generator technologies that can effectively operate at speeds up to 1,000 kRPM at power densities of 40 kW/kg (excluding heat exchanger) with an overall system efficiency of 95% or better. Such a motor/generator will have a wide range of applications, i.e. it can be used as the core building block of a very lightweight electrical energy storage syste ...

    STTR Phase I 2013 Department of DefenseNavy
  9. Monolithic Beam-Combined Mid-Infrared Laser Array

    SBC: EOS Photonics            Topic: N11AT011

    The team consisting of Eos Photonics Inc. and MIT Lincoln Laboratories will develop a MWIR laser source based on a high power, continuous wave (CW) Quantum Cascade Laser (QCL) array. The output from the array elements will be beam combined monolithically using a unique spectral beam combining technique. The combined outputs will reach power levels exceeding 25 Watts with excellent beam quality (M2

    STTR Phase II 2013 Department of DefenseNavy
  10. Plasmonic Enhanced Infrared Rectennas: Energy Harvesting, Terahertz Detection and Thermal Imaging

    SBC: COOLCAD ELECTRONICS, LLC            Topic: N11AT003

    We propose to build a two-dimensional multi-pixel infrared detector based on rectenna technology. The rectennas comprise of a micro-antenna tuned to terahertz reception and an integrated Metal-Insulator-Metal diode. This system captures infrared radiation, rectifies it and converts it to a direct current for further processing. In this Phase II project, we plan to fabricate 2-D arrays of rectennas ...

    STTR Phase II 2013 Department of DefenseNavy
US Flag An Official Website of the United States Government