You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY22 is not expected to be complete until September, 2023.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. Additive Manufacturing for Li-Ion Batteries (Phase II)

    SBC: Physical Sciences Inc.            Topic: N18AT008

    Physical Sciences Inc. (PSI) will construct and demonstrate Li-ion cells for Naval Aviation applications using solvent free additive manufacturing techniques. Lithium-ion batteries simultaneously offering high energy and power density will be demonstrated using novel solvent-free electrode feedstocks. PSI will work with the Complex Fluids Lab (CFL) at the University of Connecticut to optimize the ...

    STTR Phase II 2019 Department of DefenseNavy
  2. Innovative Material Handling System for the Expeditionary Mobile Base (ESB) Class Ship

    SBC: Advanced Technology And Research Corporation            Topic: N17AT012

    ATR proposes the development of an innovative Advanced Dual-Purpose Elevator System (ADPES) that can be installed on an Expeditionary Base Mobile (ESB) so that aircraft and cargo can be transferred from the flight deck to the mission bay and watercraft like the Combatant Craft Medium (CCM) can be launched and recovered from mission bay to the sea. The ADPES consists of a submersible platform and t ...

    STTR Phase II 2019 Department of DefenseNavy
  3. High Throughput Testing of Additive Manufacturing

    SBC: MRL MATERIALS RESOURCES LLC            Topic: N18AT028

    Additive manufacturing is a disruptive new manufacturing paradigm that hold tremendous potential for creation of novel designs and introduction of novel new alloy systems. However, much of this potential remains unrealized due to a lack of robust material properties databases. Accurate calibration of materials models and robust part qualification and certification regimes both will require massive ...

    STTR Phase II 2019 Department of DefenseNavy
  4. Low Cost Magnetic Sensor for Mine Neutralizer Identification and Charge Placement

    SBC: QUSPIN INC.            Topic: N17AT013

    Optically pumped magnetometers provide very high performance but they cost tens of thousands of dollars, and they are large and power hungry. Recently we successfully developed and commercialized laser pumped magnetometers with size, weight and power consumption that is an order of magnitude below current state-of-the-art without sacrificing performance. In this project, the focus will be on produ ...

    STTR Phase II 2019 Department of DefenseNavy
  5. Development of Explosive Non-Acoustic Sensing on Remotely Operated Vehicles for Littoral Threat Characterization in Complex Seabed Environments

    SBC: White River Technologies Inc            Topic: N17AT015

    White River Technologies, Inc. proposes this effort involving non-acoustic sensing methods and sensor fusion technologies to detect and characterize seabed objects of interest in littoral environments relevant to US Naval activities. Current and evolving threats to maritime dominance require the Navy to adapt to potential hazards from a variety of sources, which could include terrorism, and to ope ...

    STTR Phase II 2019 Department of DefenseNavy
  6. Maneuver Prediction and Avoidance Logic For Unmanned Aircraft System (UAS) Encounters with Non-Cooperative Air Traffic

    SBC: RDRTEC INCORPORATED            Topic: N13AT003

    RDRTec Inc. and Lincoln Laboratory propose to establish the feasibility and develop the plan for an extensible analytic framework and methodology to address unanticipated maneuver encounter modeling, collision risk estimation, and ownship maneuver logic. With the widespread introduction of Unmanned Aircraft Systems (UAS), the nature of the airspace will change significantly over the next 10-20 yea ...

    STTR Phase I 2013 Department of DefenseNavy
  7. Recovery of Rhenium from Superalloy Scrap

    SBC: LYNNTECH INC            Topic: OSD12T04

    Recovery and re-use of Rhenium is of critical importance to the superalloy industry due to its limited availability and growing demand. The recycling loop in the superalloy industry is currently far less efficient.The proposal addresses the recovery of Rh

    STTR Phase I 2013 Department of DefenseNavy
  8. ADP: Autonomous Deep Perception

    SBC: LYNNTECH INC            Topic: N13AT016

    Autonomous systems acquire massive amounts of sensor and communications data over the course of their potentially lengthy missions. Ideally, such systems would incorporate current and historical data into their decision making processes to generalize from experience and avoid repetitive errors. However, the sheer quantity of data gathered can make storage and processing of an unfiltered data strea ...

    STTR Phase I 2013 Department of DefenseNavy
  9. iDiver: Underwater Text Messaging and Locating System for Divers

    SBC: SCIENTIFIC SYSTEMS CO INC            Topic: N10AT034

    Diver communication is vital for the US Navy while carrying out strategic underwater missions. Diver-to-diver communication and diver-to-vehicle communication can allow the sharing of information as it is discovered and also enable performing cooperative maneuvers. Emergency situations can also benefit from such communication. In addition to the communication capability, it would be useful to know ...

    STTR Phase I 2010 Department of DefenseNavy
  10. Autonomous Landing at Unprepared Sites for a Cargo Unmanned Air System

    SBC: SCIENTIFIC SYSTEMS CO INC            Topic: N10AT039

    Scientific Systems and Brigham Young University will develop and test an autonomous helicopter landing system using vision-based navigation and control.

    STTR Phase I 2010 Department of DefenseNavy
US Flag An Official Website of the United States Government