You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY22 is not expected to be complete until September, 2023.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. Network Coding and Network Tomography (NCNT) Analysis and Algorithms for Dynamic Airborne Networks

    SBC: INFOBEYOND TECHNOLOGY LLC            Topic: AF09BT15

    The airborne network suffers from the limitations of highly constrained network capacity due to wireless link communication and intermittent connectivity among platforms. Information coding theory is a very new technology that is initially proposed for computer networks in 2001 and for ad hoc networks in 2006. The recent study shows it is able to increase the network capacity for mobile network to ...

    STTR Phase I 2010 Department of DefenseAir Force
  2. Thermoelectric material-coated carbon nanotubes as high conductivity thermal interface materials

    SBC: ADA TECHNOLOGIES, INC.            Topic: AF09BT22

    The ever-decreasing size of the electronic microchips and the ever-increasing density of electronic components required to support future Air Force platforms are creating the problem of substantial localized heat generation that can impair component operation. State of the art thermal interface materials (TIMs), that are used to dissipate heat from the source to the spreader in a microchip, are se ...

    STTR Phase I 2010 Department of DefenseAir Force
  3. Tools for Modeling & Simulation of Molecular and Nanomaterials for Optically Responsive Devices

    SBC: UES INC            Topic: AF09BT30

    Military applications for CBRNE/GWTO and C4ISR require R&D for materials to protect personnel and equipment. However, challenges remain in experimental synthesis and characterization of new materials, such as providing insight into observed properties for further advancement. Thus, it is essential to develop a predictive modeling and simulation approach that will not only provide a fundamental u ...

    STTR Phase I 2010 Department of DefenseAir Force
  4. Coupled Cluster Methods for Multi-Reference Applications

    SBC: ACES QC, LC            Topic: AF09BT40

    The objective of Phase I is to identify the strengths and weaknesses of the various multi-reference coupled-cluster (MRCC) methods that have been proposed for the description of molecular states depending upon near degeneracies and non-dynamic electron correlation. Such effects are encountered in bond breaking, at transition states, for complex open shell systems like transition metal atoms, and f ...

    STTR Phase I 2010 Department of DefenseAir Force
  5. Theoretical Innovations in Combustion Stability Research: Integrated Analysis and Computation

    SBC: Kassoy Innovative Science Solutions            Topic: AF09BT38

    Quantitative predictions of reactive flow dynamics from large-scale simulations of Liquid Rocket Engines (LRE) appear to be model dependent. Relationships and coupling among the dominant mechanisms most responsible for destabilization are obscured by the complexities of the model and subtle consequences of inherent ad hoc approximations not supported by mathematical rationale. The reliability of ...

    STTR Phase I 2010 Department of DefenseAir Force
  6. Distributed Pattern Detection and Classification in Sensor Networks

    SBC: DCM Research Resources, LLC            Topic: AF09BT09

    In this proposal, DCM Research Resources (DCM), LLC, and Syracuse University propose a highly innovative distributed pattern detection and classification approach, called Compressive Sensing aided Sequential Pattern Detection and Classification (CSASPDC) in Distributed Sensor Network. Our goal is to develop sophisticated approaches that can effectively detect or classify very weak distributed patt ...

    STTR Phase I 2010 Department of DefenseAir Force
  7. Simulation Tool for Modeling Weakly Ionized Plasma

    SBC: TECH-X CORPORATION            Topic: AF09BT10

    We propose to develop a commercial weakly ionized plasma modeling capability based off of Tech-X’s high energy density plasma fluid code TxFluids. The new additions will be able to be used to model hypersonic vehicle physics including shock waves, plasma chemistry and innovative techniques for blackout mitigation and hypersonic vehicle control through the application of electric and/or magnetic ...

    STTR Phase I 2010 Department of DefenseAir Force
  8. Surface plasmon enhanced tunneling diode detection of THz radiation

    SBC: ITN ENERGY SYSTEMS, INC.            Topic: AF09BT33

    This Small Business Technology Transfer Research phase I program will develop a new class of uncooled THz detectors for the 1-10THz band with a novel design using surface plasmon resonant cavities with integrated metal-insulator-metal tunneling diodes as the detecting element. Tunneling diodes provide ultrafast broadband response, potentially into the visible (300THz), but demonstrated performanc ...

    STTR Phase I 2010 Department of DefenseAir Force
  9. Modeling Auditory Pattern Recognition and Learning with Gradient Frequency Neural Oscillator Networks

    SBC: OSCILLOSCAPE, LLC            Topic: AF09BT12

    This Small Business Technology Transfer research project addresses the perception and learning of complex sound patterns within complex auditory scenes. The objective is to model auditory signal processing, pattern recognition and learning in the human auditory system. Our novel approach simulates the nonlinear signal processing that has been observed in auditory physiology. By mimicking functiona ...

    STTR Phase I 2010 Department of DefenseAir Force
  10. Signal Processing with Memristive Devices

    SBC: Microxact, Inc.            Topic: AF09BT23

    To streamline data processing in, e.g., hyperspectral imaging, new massively parallel data processing circuits are needed. The team of MicroXact Inc. and UC Santa Barbara propose to develop circuits based on completely novel computing paradigm, which could be extremely efficient (i.e. dense, relatively inexpensive, and consume very little power) for massively parallel signal processing. We offer t ...

    STTR Phase I 2010 Department of DefenseAir Force
US Flag An Official Website of the United States Government