You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. STTR Phase I: Self-Powering Textiles for Electronic Wearables

    SBC: CAPACITECH ENERGY INC            Topic: EW

    The broader impact/commercial potential of this Small Business Technology Transfer (STTR) project is the integration of energy conversion and energy storage technologies into a single ribbon called the Solar Supercapacitor (SolarCap). The innovative aspect of SolarCap technology is that it is a self-powering ribbon which can be weaved along with cotton fibers to make a fabric. Batteries are curren ...

    STTR Phase I 2019 National Science Foundation
  2. GECCO: Gecko-gripper for EOD with Cavitation Cleaning Operation

    SBC: VALOR ROBOTICS, LLC            Topic: N19AT011

    The objective of the Phase I proposal is to investigate the application of controlled cavitation cleaning technology in conjunction with gecko-inspired mechanical adhesion and soft elastomeric applicators for use in non-intrusive EOD operations. This investigation requires the proof-of-concept testing and validation of a controlled cavitation cleaning mechanism, and a soft robotic gecko-inspired m ...

    STTR Phase I 2019 Department of DefenseNavy
  3. Power Dense Turbo-Compression Cooling Driven by Waste Heat

    SBC: MANTEL TECHNOLOGIES, INC.            Topic: N19AT013

    The U.S. Navy seeks methods to improve the fuel economy of marine diesel engines through utilization of waste heat. Low temperature engine jacket water, lubrication oil, and aftercooler air are largely untapped streams of thermal energy on these ships, but their utilization circumvents many operation challenges associated with exhaust gases. For example, variable and high exhaust gas temperatures ...

    STTR Phase I 2019 Department of DefenseNavy
  4. High Speed Spinning Scroll Expander (HiSSSE)- Organic Rankine Cycle for Increased Naval Ship Power Density and Fuel Efficiency

    SBC: Air Squared, Inc.            Topic: N19AT013

    Waste heat from Naval diesel generators provides significant opportunity to introduce organic Rankine cycles (ORC) to increase their fuel efficiency. The objective of the proposed effort is to design and demonstrate a high-speed, spinning scroll expander (HiSSSE) ORC as a power dense waste heat recovery system for diesel generators on ships. The system will leverage Air Squared’s spinning scroll ...

    STTR Phase I 2019 Department of DefenseNavy
  5. Compact Waste Heat Recovery Power Generation System

    SBC: SPECTRAL ENERGIES LLC            Topic: N19AT013

    The STTR topic N19A-T013 seeks innovative technology to improve the power density and efficiency of propulsion and power generation devices. To address this challenge, Spectral Energies in collaboration with its academic partner Dr. Rory Roberts at Wright State University proposes to develop a compact heat recovery system based on a supercritical CO2 based Rankin Cycle. At the end of the STTR prog ...

    STTR Phase I 2019 Department of DefenseNavy
  6. Propagation Established through Autonomous Raman Lidar (PEARL)

    SBC: SPECTRAL SCIENCES INC            Topic: N19AT015

    Accurate characterization of and propagation modeling through the Marine Boundary Layer is critical for maximizing Electro-Magnetic (EM) systems signal exploitation for naval asset offensive, defensive, and stealth operational performance. Strong temperature and humidity gradients in the Surface Boundary Layer lead to optical paths exhibiting Electro-Optic Infrared (EOIR) anomalous refraction and ...

    STTR Phase I 2019 Department of DefenseNavy
  7. FPGA Vulnerability Analysis Tools

    SBC: BLUERISC INC            Topic: N19AT018

    BlueRISC's proposed solution takes the form of an automated toolkit that is able to analyze an FPGA bitstream with respect to exploitability. The solution relies on an FPGA-agnostic framework for automatically reverse-engineering an FPGA-bitstream into an intermediate representation (IR). This IR is FPGA agnostic and enables a program-analytic framework for extracting a fundamental FPGA-centric Vu ...

    STTR Phase I 2019 Department of DefenseNavy
  8. Cyber Adversary Discovery Engine (CADE)

    SBC: CHARLES RIVER ANALYTICS, INC.            Topic: N19AT021

    We propose to design and build the Cyber Adversary Discovery Engine (CADE) for forensic cyber analysis. CADE combines expressive behavioral modeling technology with machine learning to automatically recognize adversary behaviors, goals and tactics, techniques and procedures (TTPs). CADE can further automatically recognize changes in adversary TTPs that occur in forensic data. A key technical capab ...

    STTR Phase I 2019 Department of DefenseNavy
  9. ALCHEMI: Attacker Learning in Cybernetworks using Heterogeneous Energy-guided Model Inference

    SBC: APTIMA INC            Topic: N19AT021

    The United States relies on networks of cyber-physical systems to conduct military and commercial operations, such as logistics, transportation, information sharing, energy production and distribution, financial transactions, elections, and infrastructure management. As the volume and diversity of cyber-attacks on these networks dramatically increase, there is a growing need for advanced tools and ...

    STTR Phase I 2019 Department of DefenseNavy
  10. A Wavelength-scalable Dual-stage Photonic Integrated Circuit Spectrometer

    SBC: PHYSICAL SCIENCES INC.            Topic: N19AT023

    In this program, Physical Sciences Inc. (PSI) will team with Professor Ali Adibi’s group at the Georgia Institute of Technology to develop a photonic integrated circuit (PIC) spectrometer that can simultaneously achieve high-resolution over wide-bandwidths using a scalable and foundry-ready approach. While a PIC-based spectrometer is a key component for on-chip Raman, fluorescence, and absorptio ...

    STTR Phase I 2019 Department of DefenseNavy
US Flag An Official Website of the United States Government