You are here
Award Data
The Award database is continually updated throughout the year. As a result, data for FY22 is not expected to be complete until September, 2023.
Download all SBIR.gov award data either with award abstracts (290MB)
or without award abstracts (65MB).
A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.
-
Orthogonal Chip Based Electronic Sensors for Chemical Agents
SBC: SEACOAST SCIENCE, INC. Topic: AF08T015Recent years have seen a shift in threats to US national security. Today increasing focus for national security is management of terrorist activities. Deliberately exposing a civilian population to chemicals and explosives to cause harm represents a looming terrorist threat. Early detection and identification is a difficult but essential element to minimizing the threat. The Seacoast Science/U ...
STTR Phase II 2010 Department of DefenseAir Force -
Sub-aperture based EO imaging systems
SBC: MZA ASSOCIATES CORP Topic: AF08T021MZA proposes design, integration, testing, and simulation of electro-optical (EO) imaging and computer processing hardware for operating a phased array consisting of 7-12 subapertures. Our implementation of image processing on a graphics processor units (GPUs) for subaperture piston control will be upgraded and computer hardware will be built in Phase II to operate at control rates exceeding 1 kH ...
STTR Phase II 2010 Department of DefenseAir Force -
Speckle image processing for conformal sub-aperture arrays
SBC: Optical Physics Company Topic: AF08T021Future Air Force platforms require electro-optic long range imaging systems conformal to the surface of the aircraft to minimize drag and maximize stealth. The long imaging range often means having to compensate for atmospheric turbulence as well as the boundary layer around the aircraft. During the first phase of this STTR project, Optical Physics Company (OPC) demonstrated the feasibility o ...
STTR Phase II 2010 Department of DefenseAir Force -
High-throughput femtosecond fiber laser microstructuring system
SBC: POLARONYX INC Topic: AF08T029Based on our success in developing the world first commercial 100 micro Joule fs fiber laser system and our leading technology development in ultrashort pulsed fiber laser, PolarOnyx and University of California at Davis proposes, for the first time, a fs-high power (100 W), high energy (>100 uJ) and high repetition rate (MHz) fiber laser microstructuring system to meet with the requirement of the ...
STTR Phase II 2010 Department of DefenseAir Force -
Ultradense Plasmonic Integrated Devices and Circuits
SBC: ULTIMARA INC Topic: AF08BT18We propose to develop ultradense plasmonic integrated devices and circuits for optical interconnect compatible with the electronic circuitry. In our proposal, we will employ engineered metallic nanostructures that combine energy concentration by plasmonic lenses and retardation-based plasmonic resonances to even further boost the efficiency of materials exhibiting optical nonlinearity. These plas ...
STTR Phase I 2010 Department of DefenseAir Force -
Near-field Fiber Laser Comb Spectroscopy (NFLCS)
SBC: POLARONYX INC Topic: AF08BT30Based on our success in developing the world first commercial 100 micro Joule
STTR Phase I 2010 Department of DefenseAir Force -
High Speed Nano-Infrared Spectroscopy
SBC: Anasys Instruments Corp. Topic: AF08BT30Anasys Instruments in collaboration with University of Illinois Urbana-Champaign and subcontractor Dr. Konstantin Vodopyanov propose to develop the world’s first high speed nano infrared spectroscopy (“NanoIR”) capability. By combining and extending the capabilities of infrared spectroscopy and atomic force microscopy, this breakthrough platform will provide sub-100 nm chemical mapping capa ...
STTR Phase I 2010 Department of DefenseAir Force -
VLSI Compatible Silicon-on-Insulator Plasmonic Components
SBC: ITN ENERGY SYSTEMS, INC. Topic: AF08BT18This Small Business Technology Transfer Phase I project will develop ultradense, low-power plasmonic integration components and devices for on-chip manipulation and processing of optical signals. Both passive and active components will be studied. Detailed performance predictions will be obtained through finite element modeling (FEM) of the harmonic Maxwell’s equations. The FEM provides detai ...
STTR Phase I 2010 Department of DefenseAir Force