You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY23 is not expected to be complete until September, 2024.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Near Real-Time Quantification of Stochastic Model Parameters

    SBC: APPLIED MATHEMATICS INC            Topic: A13AT009

    Mathematical models of physical and biological systems contain parameters that need to be estimated from measured data. Models with parameters distributed probabilistically require the estimates of a probability measure over the set of admissible parameters. We propose to use frequentist-based approaches for non-parametrically estimating probability measures that describe the distribution of par ...

    STTR Phase I 2013 Department of DefenseArmy
  2. New Paradigms in High Pressure Combustion Dynamics Prediction and Control

    SBC: HYPERCOMP INC            Topic: AF12BT15

    ABSTRACT: Stability phenomena that are of vital interest in liquid rocket motor development involve a confluence of diverse physics and interactions across many system components. Any comprehensive, self-consistent numerical model is burdened by a very large computational mesh, stiff unsteady processes which limit permissible time step, and the need to perform tedious, repeated calculations for a ...

    STTR Phase I 2013 Department of DefenseAir Force
  3. A Priori Error-Controlled Simulations of Electromagnetic Phenomena for HPC

    SBC: HYPERCOMP INC            Topic: A11aT015

    Recent times have witnessed enormous advances in high fidelity modeling of electromagnetic (EM) phenomena in the time-domain. To make such simulations tractable, the computational region must be truncated in a manner allowing outgoing waves to leave with minimal reflection from the boundary. HyPerComp Inc., in collaboration with Prof. Thomas Hagstrom of the Southern Methodist University (Dallas, T ...

    STTR Phase II 2013 Department of DefenseArmy
  4. Modeling and Optimizing Turbines for Unsteady Flow

    SBC: HYPERCOMP INC            Topic: ST13A005

    Pressure gain combustion (PGC) offers means to a more efficient energy use in propulsion and power generation devices. Integrating PGC concepts in gas turbine engines often results in highly unsteady flow conditions at turbine inlet. Further, the backpres

    STTR Phase I 2013 Department of DefenseDefense Advanced Research Projects Agency
  5. Conformal Array Laser Imager for Bondline Evaluation&Repair (CALIBER)

    SBC: ADVANCED SYSTEMS & TECHNOLOGIES INC            Topic: N13AT011

    The NAVY solicits new non-destructive inspection (NDI) methods to address detection and evaluation of kissing bonds and bondline integrity in aerospace composites since no currently accepted standard exists. In response AS & T Inc. propose, the Conformal Array Laser Imager for Bondline Evaluation and Repair (CALIBER), designed expressly for this purpose. The novelty of the proposed approach lies i ...

    STTR Phase I 2013 Department of DefenseNavy
  6. High Efficiency Computation of High Reynolds Number Flows via Anisotropic Adaptive Mesh Refinement

    SBC: CMSOFT, INC.            Topic: N13AT009

    This STTR Phase I project aims to design, implement, and demonstrate a rigorous, practical, fast, and re-usable anisotropic mesh adaptation software module for enabling the efficient computation of high Reynolds number flows in large computational domains. To this effect, it focuses on developing: (a) a set of portable and cache-friendly dynamic data structures that ease the implementation in a hy ...

    STTR Phase I 2013 Department of DefenseNavy
  7. Biologically-inspired Integrated Vision System

    SBC: SPECTRAL IMAGING LABORATORY            Topic: AF12BT03

    ABSTRACT: The U.S. Air Force has a need to develop a new class of advanced, wide field of view (WFOV) imaging sensors that sample the radiation field in multiple modes: spectral, temporal, polarization, and detailed object shape. These multimodal sensors are to be deployed on high altitude drones to enhance their intelligence, surveillance, and reconnaissance (ISR) capabilities. Smaller versio ...

    STTR Phase I 2013 Department of DefenseAir Force
  8. Security in Cyber-Physical Networked Systems

    SBC: RAM LABORATORIES            Topic: AF13AT05

    ABSTRACT: Physical infrastructure is faced with a variety of security challenges including malicious insiders, hackers, and threats present within the supply chain. Hardware, sensors, and software residing in these environments may be captured or compromised by an adversary for the purpose of attacking or disrupting operations. Recent examples of attacks on such infrastructure can be found in Fla ...

    STTR Phase I 2013 Department of DefenseAir Force
  9. First-Principles-Based Framework for Discovery and Design of Sustainable Non-Rare-Earth High-Temperature Alloy Systems

    SBC: CFD RESEARCH CORPORATION            Topic: OSD12T06

    In this STTR Phase I project, CFD Research Corporation and University of Nebraska at Omaha will develop a preliminary computationally-driven first-principles framework for discovery and design of non-RE-containing alloys for high temperature applications. While rare-earth (RE) based alloys have played a pivotal role in modern defense and high-tech industry, sustainability of RE-based materials is ...

    STTR Phase I 2013 Department of DefenseAir Force
  10. Multi-scale modeling of corrosion fatigue damage using peridynamics theory

    SBC: CFD RESEARCH CORPORATION            Topic: N13AT007

    The overall objective of this effort is to identify, and validate a suitable methodology and the associated multi-scale computational technique for predictive assessment of corrosion fatigue damage in Naval aircraft. Annual costs for corrosion inspection and repair of military aircraft are estimated to exceed $1B. Predictive modeling of corrosion fatigue damage is challenging since it has to captu ...

    STTR Phase I 2013 Department of DefenseNavy
US Flag An Official Website of the United States Government