You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Random Number Generation for High Performance Computing

    SBC: Silicon Informatics, Inc.            Topic: A10AT012

    Highly scalable parallel random number generators (RNGs) will be developed, evaluated and implemented for use in high performance computing on thousands of multi-core processors and general purpose graphics processing units. The main contributions are: (a) design and implementation of new parallel test methods that capture the inter-stream correlations exhibited in practice and complement the curr ...

    STTR Phase I 2010 Department of DefenseArmy
  2. Tools for Modeling & Simulation of Molecular and Nanomaterials for Optically Responsive Devices

    SBC: UES INC            Topic: AF09BT30

    Military applications for CBRNE/GWTO and C4ISR require R&D for materials to protect personnel and equipment. However, challenges remain in experimental synthesis and characterization of new materials, such as providing insight into observed properties for further advancement. Thus, it is essential to develop a predictive modeling and simulation approach that will not only provide a fundamental u ...

    STTR Phase I 2010 Department of DefenseAir Force
  3. Narrowband Perfect Absorber for Infrared Sensing

    SBC: SRICO INC            Topic: A12aT023

    SRICO proposes to combine metamaterial narrowband absorbers and SRICO-proprietary thin film lithium tantalate (TFLT) pyroelectric thermal detectors to produce ultra low cost, size, weight and power (SWaP) room temperature stand-off chemical sensors. Metamaterial narrowband absorber elements will be integrated into the TFLT pyroelectric detector process to provide conversion of radiation to heat, w ...

    STTR Phase I 2013 Department of DefenseArmy
  4. Wide Bandgap Nanostructured Space Photovoltaics

    SBC: Firefly Technologies            Topic: T3

    Firefly, in collaboration with Rochester Institute of Technology, proposes an STTR program for the development of a wide-bandgap GaP-based space solar cell capable of efficient operation at temperatures above 300oC. Efficiency enhancement will be achieved by the introduction of InGaP quantum wells within the active region of the wide-gap base material. The introduction of these nanoscale features ...

    STTR Phase I 2010 National Aeronautics and Space Administration
  5. Fabrication of Ta-Hf-C-based Ultra High Temperature Composites via a

    SBC: UES INC            Topic: MDA09T002

    This Phase I STTR program seeks a new fabrication method to produce stronger (>100 kpsi) and tougher (>10 MPa m1/2) ultra high temperature Ta-Hf-C-based composites (UHTC) with an outstanding oxidation resistance for use as thermal protection systems for hypersonic applications, as well as for advanced rocket nozzle throat components. UES will apply a novel "Top Down" approach to control the micro ...

    STTR Phase I 2010 Department of DefenseMissile Defense Agency
  6. Nickel-Based Amorphous Metal Membranes for Water Gas Shift Reactors

    SBC: MAINSTREAM ENGINEERING CORP            Topic: 10c

    Hydrogen produced today from coal, natural gas, or biomass must be separated and purified outside the reactors using pressure swing absorption (PSA), a process that requires significant additional space and energy. Placing hydrogen-permeable membranes inside the reactors themselves would allow hydrogen to diffuse out, thereby reducing the cost of hydrogen production. In this Phase I effort, Mainst ...

    STTR Phase I 2010 Department of Energy
  7. COA360: Measuring Cultural Competence in Healthcare

    SBC: DayStar Research            Topic: NIMHD

    DESCRIPTION (provided by applicant): This Phase 1 STTR application seeks support for research to enhance the commercial viability of a tool to assess the cultural competence of health care organizations. The tool was developed by Dr. Thomas A. LaVeist, who is director of the Hopkins Center for Health Disparities Solutions at the Johns Hopkins Bloomberg School of Public Health. The Cultural-comp ...

    STTR Phase I 2010 Department of Health and Human ServicesNational Institutes of Health
  8. Realistic State and Measurement Error Uncertainty Computation and Propagation for Space Surveillance and Reconnaissance

    SBC: NUMERICA CORPORATION            Topic: AF09BT11

    Space surveillance is the component of space situational awareness focused on the detection of resident space objects (RSOs) and the use of multisource data to track and identify space objects. While the propagation of the states of RSOs has been investigated extensively over the last fifty years, the correct propagation of their covariance or the more general (non-Gaussian) probability distribut ...

    STTR Phase I 2010 Department of DefenseAir Force
  9. Ultraviolet Acousto-Optic Devices Using Barium Borate (BBO)

    SBC: BRIMROSE TECHNOLOGY CORP            Topic: A10AT008

    We will develop novel acousto-optic devices for use in the UV using the new material Barium Borate (BBO) which not only has the required UV transparency, but a unique combination of acoustic and optical properties. The capabilities provided by these new UV AO devices are ideally suited for optical addressing arrays of trapped ions with focused spots from appropriately tuned UV and visible lasers t ...

    STTR Phase I 2010 Department of DefenseArmy
  10. Automated Blood Component Separator

    SBC: Antek            Topic: A10AT026

    The objective of the proposed research is to develop a portable, passive system for rapid and efficient blood component separation. While a number of macro-scale devices are routinely employed in laboratory settings to separate, for example, red blood cells (RBCs) from platelet-rich plasma (PRP), and an emerging class of microfabricated devices are slowly being developed to address various low-th ...

    STTR Phase I 2010 Department of DefenseArmy
US Flag An Official Website of the United States Government