You are here
Award Data
The Award database is continually updated throughout the year. As a result, data for FY23 is not expected to be complete until September, 2024.
Download all SBIR.gov award data either with award abstracts (290MB)
or without award abstracts (65MB).
A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.
The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.
-
A Fast-Response, Electronically Controlled Fuel Injection System for Small Heavy Fuel Engines with Multi-Fuel Capabilities
SBC: MAINSTREAM ENGINEERING CORP Topic: N10AT033Advances in electronically controlled injection technologies for diesel engines have provided a method to improve medium- to heavy-duty engine performance through increased injection pressures, multiple injections, and injection rate shaping. Although these injection systems have been primarily limited to larger engines, the ability to rapidly and precisely meter fuel for smaller engines is partic ...
STTR Phase I 2010 Department of DefenseNavy -
Advanced Software Tools for Lithium Ion Battery Risk Assessment (LIBRA)
SBC: Impact Technologies Topic: N10AT014Impact Technologies, in collaboration with the Georgia Tech Center for Innovative Fuel Cell and Battery Technologies, proposes to develop tools for Lithium Ion Battery Risk Assessment (LIBRA). These tools will allow the Navy to analyze proposed Li-Ion battery designs and assess the overall risk to the platform in the event of failure in a single cell. The tool will also predict the effects of a ca ...
STTR Phase I 2010 Department of DefenseNavy -
Advanced Materials for the Design of Lightweight JP5/JP8/DS2 Fueled Engines for Unmanned Aerial Vehicles (UAVs)
SBC: Northwest Uld, Inc. Topic: N10AT001Northwest UAV Propulsion Systems proposes using our purpose built heavy fuel engine designed and built in the USA for small unmanned aerial systems in the tier 2 & 3 class. We will be adding a lightweight ceramic material set combined with FEA (Finite Element Analysis) and heavy fuel atomizer (IRAD Project) to create a lightweight engine for a SUAS or STUAS class UAVs. The Ceramic material set is ...
STTR Phase I 2010 Department of DefenseNavy -
Adaptive Turbine Engine Control for Stall Threat Identification and Avoidance
SBC: AURORA FLIGHT SCIENCES CORPORATION Topic: N10AT008Aurora Flight Sciences and MIT propose to develop a model-based adaptive health estimation and real-time proactive control to identify gas turbine engine stability risks and avoid them through control action. In this concept, the engine control system actively monitors sensors and actuators, compares them against physical models, and infers which components may be performing poorly and may need to ...
STTR Phase I 2010 Department of DefenseNavy