You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Innovative additive manufacturing (AM) process for successful production of 7000 series aluminum alloy components using Smart Optical Monitoring Syste

    SBC: SENSIGMA LLC            Topic: N18AT005

    Naval aircraft components are routinely made of 7000 series aluminum alloys due to their strength, weight and fatigue properties. Present Additive Manufacturing (AM) processes falls short of producing 7000 series Al alloys successfully due to lack of porosity, thermal and composition control. In-situ methods implemented to date largely only yield information about the component surface and other m ...

    STTR Phase I 2018 Department of DefenseNavy
  2. Advanced Ship-handling Simulators

    SBC: D'Angelo Technologies, LLC            Topic: N18AT014

    There is a need to create an automated, adaptive, real time coaching module that can integrate the Conning Officer Virtual Environment (COVE) along with the associated Intelligent Tutor System (COVE-ITS) and the Conning-Officer Ship Handling Assessment (COSA) together. By automating the evaluation process, Surface Warfare Officers (SWOs) will have the opportunity to use the COVE simulations more f ...

    STTR Phase I 2018 Department of DefenseNavy
  3. Advanced Command and Control Architectures for Autonomous Sensing

    SBC: TOYON RESEARCH CORPORATION            Topic: N18BT030

    We propose to develop an innovative open architecture for the semi-autonomous command and control (C2) of teaming Unmanned Aircraft Systems (UAS). The proposed architecture, based upon Toyon’s Decentralized Asset Management system, supports both centralized and decentralized fusion and control autonomy solutions as well as hybrids approaches. Leveraging STANAG-4586, TCP/IP, UPD, Google™ protob ...

    STTR Phase I 2019 Department of DefenseNavy
  4. Carbon Nanotube-Based Heater Coatings for Processing of Thermosetting and Thermoplastic Composites

    SBC: MAINSTREAM ENGINEERING CORP            Topic: N18BT031

    For this research program, Mainstream will collaborate with Colorado State University (CSU) to develop a nanostructured heater capable of curing aerospace grade composites out-of-autoclave (OOA). The use of autoclaves is the primary cost driver in composite manufacturing due to size limitations, long processing times, and inefficient energy usage. Therefore, the Navy is looking to develop a nanost ...

    STTR Phase I 2019 Department of DefenseNavy
  5. Compact Thermal Management System for Laser Systems

    SBC: SPECTRAL ENERGIES LLC            Topic: N18AT001

    The use of laser technologies and high-power electronics is rapidly being incorporated into tactical platforms for imaging, target designation, and range finding. Electronic equipment including lasers demand power from a tactical aircraft and produce large amounts of thermal energy as a waste product. Current thermal management technologies will not be sufficient for future aircraft as thermal man ...

    STTR Phase I 2018 Department of DefenseNavy
  6. Out-of-Oven Aerospace Composites

    SBC: CORNERSTONE RESEARCH GROUP INC            Topic: N18BT031

    Large aerospace composite structures currently require autoclaves and ovens to achieve desired performance which are expensive to purchase, costly to operate, and often limit part size and production rate. Ovens and autoclaves rely on convective heating which is inefficient, consumes large amounts of energy, and can be difficult to predict. Alternative cure processes using external heaters or hot ...

    STTR Phase I 2019 Department of DefenseNavy
  7. Power and Propulsion System Optimization

    SBC: CORNERSTONE RESEARCH GROUP INC            Topic: N18AT012

    Unmanned underwater vehicles (UUVs) are currently limited in the type of missions they can perform. Limited available power limits which sensors can be run or for how long, and also limits the duration and range of the mission. More efficient propulsion systems would increase the power available to the UUV payload. Improved power distribution systems and control systems would also increase the ava ...

    STTR Phase I 2018 Department of DefenseNavy
  8. Operational Sand and Particulate Sensor System for Aircraft Gas Turbine Engines

    SBC: HAL Technology, LLC            Topic: N18AT023

    Gas turbine engines with prolonged exposure to sand and dust are susceptible to component and performance degradation and ultimately engine failure. Hal Technology’s proprietary, compact, rugged, flush-mounted, fiber-optic sensor platform measures particulate size, size distributions, and concentration for real-time engine health monitoring. Our proposed sensor will use an innovative hybrid disc ...

    STTR Phase I 2018 Department of DefenseNavy
  9. Optimized Higher Power Microwave Sources

    SBC: EPIRUS, INC            Topic: N19AT001

    Epirus presents a high powered microwave source that leverages ultra high power density solid state materials, called Leonidas, to meet all of the government’s objectives for the vehicle stop and vessel stop mission. The Leonidas unit has already achieved over 10 kW of effective radiated power (ERP) in laboratory tests using software definable solid state technology and we show how this scales t ...

    STTR Phase I 2019 Department of DefenseNavy
  10. Seamless Wireless Charging of Micro and Small Unmanned Aerial System Through Local Power Transmission Infrastructure

    SBC: EH GROUP INC            Topic: N19AT019

    Wireless charging of unmanned aerial system (UAS) platforms from the environment has the potential to greatly increase flight and mission times. A promising option is to use electromagnetic fields from the power transmission infrastructure as an energy source. EH Group and the University of Alabama propose a design for UAS wireless charging in the near-field environment of the commercial power tra ...

    STTR Phase I 2019 Department of DefenseNavy
US Flag An Official Website of the United States Government