You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. High Fidelity Computational Models for Aggregated Tissue Interaction in Surgical Simulations

    SBC: CFD RESEARCH CORPORATION            Topic: DHP16A001

    Surgical simulations aiming to support surgeon practices and medical education have attracted enormous research effort over the last two decades. However, the physical reality, especially on simulating aggregated tissue interaction, is still unsatisfactory. In this proposed work, an open source surgery simulation framework, SoFMIS, will be utilized and enhanced with tissue interaction models to a ...

    STTR Phase I 2016 Department of DefenseDefense Health Agency
  2. Mission and Information Assurance through Cyber Atomics

    SBC: SECURBORATION, INC.            Topic: AF17BT004

    Securboration is proposing to build a prototype tool called CRATE - Cyber Risk Assessment for Threatened Environments, which will take as input mission requirements and run-time transactions, and produce a mission-centric threat map (as opposed to network-node-centric which most COTS tools do) during execution. It will trace the run-time behavior of various processes in the system that expose thos ...

    STTR Phase I 2018 Department of DefenseAir Force
  3. Information Theory Models for Multi-Sensor Design of Signature Exploitation Systems

    SBC: NOVATEUR RESEARCH SOLUTIONS LLC            Topic: AF16AT29

    This STTR Phase I project will develop a unified information theoretic framework for multi-sensor target recognition system that enables quantification of information contribution and synergistic combination of features from different sensor modalities. ...

    STTR Phase I 2016 Department of DefenseAir Force
  4. Vibration imaging for the characterization of extended, non-cooperative targets

    SBC: Guidestar Optical Systems, Inc.            Topic: AF19AT006

    Locating objects that vibrate is a way to discern potential threats and locate targets. However, current vibrometry technology typically measures only the global vibration of target and cannot create an extended spatial measurement of the vibration profile of the target. These solutions cannot identify what the target is, nor can they locate potential weak spots on the target, because they lack sp ...

    STTR Phase I 2019 Department of DefenseAir Force
  5. Multi-Physics Models for Parachute Deployment and Braking for Coupling with DoD CREATE-AV Kestrel

    SBC: Kord Technologies, Inc.            Topic: AF18AT004

    Design analysis of parachute recovery systems has relied on a combination of core design principles, historical empirical data, and extensive testing for decades. Parachute motion involves complex phenomena involving porous bluff-body aerodynamics and highly deformable cloth. The proposed project is a plugin for the DoD CREATE-AV Kestrel simulation suite that will enable high-fidelity simulations ...

    STTR Phase I 2018 Department of DefenseAir Force
  6. Bio-Mathematical Models of Aggregated Tissues & Organ Properties

    SBC: BIOMOJO LLC            Topic: DHP16A001

    BioMojo LLC and the Departments of Mathematics and Biomedical Engineering at the University of North Carolina Chapel Hill, will develop a preliminary bio mathematical model framework to represent how human tissues interact and behave at their boundaries. Tissue interaction properties (e.g. tensile, shear, friction, and so forth) of connective, epithelial, muscular, and nervous tissue including su ...

    STTR Phase I 2016 Department of DefenseDefense Health Agency
  7. Multi Scale Multi Fidelity Carbon-Carbon Manufacturing Process Modeling with Data Fusion

    SBC: CFD RESEARCH CORPORATION            Topic: AF19AT021

    The proposed effort aims to deliver a novel process model for carbon-carbon manufacturing to determine thermo-mechanical properties of these materials and their components, thereby enabling a faster cycle for material development for hypersonic platforms. The proposed solution consists of (1) requirement and functionality analyses, (2) a six-level model representing the key steps of the manufactur ...

    STTR Phase I 2019 Department of DefenseAir Force
  8. Affordable Integrated Circuit Packaging and Assembly for High-Temperature Intelligent Components

    SBC: MICROELECTRONICS RESEARCH DEVELOPMENT CORPORATION            Topic: AF16AT17

    Micro-RDC proposes to demonstrate the feasibility of developing low-cost, low-weight, reliable packaging materials and processes to produce low-power advanced Integrated Circuits (ICs) that can operate continuously at temperatures between -55C and +225...

    STTR Phase I 2016 Department of DefenseAir Force
  9. Operational Outer Zone Energetic Charged Particle Model

    SBC: ADVANCED RESEARCH CORPORATION            Topic: AF17CT03

    Earths outer radiation belt, which consists of electrons with hundreds of keV to MeV energies, is a highly dynamic and driven environment.The large variations in electron flux, if unaccounted for, can cause satellites that travel through this complex region to experience anomalous behavior ranging from temporary satellite outages due to electrostatic discharge events in system electronics to poten ...

    STTR Phase I 2018 Department of DefenseAir Force
  10. Portable Bioprinted Organoids for Physiological Monitoring

    SBC: CFD RESEARCH CORPORATION            Topic: AF19AT002

    hazardous chemicals such as JP8, chromium, and byproducts of led-free frangible ammunition and to hazardous environments. Of the many dangers Airmen face, the hypoxia-like unexplained physiological events pilots face are some of the most dangerous and elusive. Current wearable sensors cannot decouple complex, interdependent in vivo response. We propose to develop (design, fabricate, test, and demo ...

    STTR Phase I 2019 Department of DefenseAir Force
US Flag An Official Website of the United States Government