You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Eye-safe Optically-Pumped Gas-filled Fiber Lasers

    SBC: Precision Photonics Corporation            Topic: A08T021

    An eye-safe optically pumped laser based on a gas-filled hollow optical fiber will be demonstrated to lase at both near infrared (IR) and mid IR wavelengths. These lasers will be the first in a new class of IR lasers, based on the combination of hollow-f

    STTR Phase II 2010 Department of DefenseArmy
  2. Fabrication Technology for Oxide Film Heterostructure Devices

    SBC: STRUCTURED MATERIALS INDUSTRIES, INC.            Topic: AF08BT22

    In this STTR program, Structured Materials Industries, Inc. (SMI) and our partners are developing commercially viable fabrication technology for oxide heterostructure based nanoelectronic devices. Oxide heterostructures, consisting of a polar oxide such as LaAlO3 and a non-polar oxide such as SrTiO3, offer a novel route to building nanoelectronic devices. The benefits of these devices will inclu ...

    STTR Phase II 2010 Department of DefenseAir Force
  3. Fast, High-Order algorithms for Many-Core and GPU-based Computer Architectures

    SBC: MATHEMATICAL SYSTEMS & SOLUTIONS, INC.            Topic: AF09BT18

    We propose algorithm development and efficient GPU implementation of numerical PDE solvers based on four novel high-order methodologies: 1) High-order Discontinuous Galerkin approaches, 2) Fast High-Order boundary integral methods, 3) Convergent FFT-based methodologies for evaluation of computational boundary conditions, and 4) Fourier Continuation methods. These methodologies are applicable to a ...

    STTR Phase I 2010 Department of DefenseAir Force
  4. Fast Trajectory Generation in High Fidelity Geopotentials using Finite Elements, Mascons, and Parallelism

    SBC: ANALYTICAL MECHANICS ASSOCIATES, INC.            Topic: AF09BT02

    We propose to investigate the feasibility of obtaining fast and accurate trajectories using global geopotential models representing departures from the two-body plus J2 terms. The proposed geopotential formulations and numerical integration methods rely on multi-core processors and the emerging massive parallel capabilities of Graphics Processing Units (GPUs) available to common personal computer ...

    STTR Phase I 2010 Department of DefenseAir Force
  5. Fast Updatable Large-area Holographic Display

    SBC: NEW SPAN OPTO-TECHNOLOGY, INC.            Topic: AF08T001

    Two-dimensional (2D) visualization techniques have limit capacity to achieve understanding of full dimensionality of the battlefield. Rewritable 3D holographic storage is promising for updatable 3D display applications. In Phase I, New Span Opto-Technology has demonstrated novel concepts of both holographic recording technique and recording material system without the use of high voltage. We have ...

    STTR Phase II 2010 Department of DefenseAir Force
  6. Fast Updatable Large-area Holographic Display

    SBC: NEW SPAN OPTO-TECHNOLOGY, INC.            Topic: AF08T001

    Two-dimensional (2D) visualization techniques have limit capacity to achieve understanding of full dimensionality of the battlefield. Rewritable 3D holographic storage is promising for updatable 3D display applications. In Phase I, New Span Opto-Technology has demonstrated novel concepts of both holographic recording technique and recording material system without the use of high voltage. We have ...

    STTR Phase II 2010 Department of DefenseAir Force
  7. Frequency agile THz detectors for multiplicative mixing

    SBC: Tanner Research, Inc.            Topic: AF08BT26

    ABSTRACT: A system that operates at room temperature and that could scan for concealed weapons from standoff distances of >10 m would be a tremendous asset for US military homeland security personnel worldwide. THz imaging can, potentially, be used for this application, but it requires the development of a new class of THz detectors whereby the signal to noise ratios are improved significantly. ...

    STTR Phase II 2010 Department of DefenseAir Force
  8. Functionalized Single Walled Carbon Nanotubes for High Performance Composites

    SBC: Carbon Solutions Inc            Topic: N06T031

    New material systems are required as a result of advanced performance criteria for the next generation destroyer program and other Navy ships. As a part of these requirements there is high demand for high strength structural composites. The objective of the STTR Phase II project is to develop high strength and light weight structural composites utilizing functionalized single-walled carbon nanotub ...

    STTR Phase II 2010 Department of DefenseNavy
  9. Fusion of a Real-time Analytical Model with Facility Control Systems

    SBC: STREAMLINE AUTOMATION LLC            Topic: AF09BT16

    AEDC personnel have developed and demonstrated the effectiveness of coupling a control volume model with a wind tunnel control system. The performance of the model was hampered because parameters of the model were assumed to be constant, when they are likely variables. A method for using facility data to determine functional relationships defining these parameters would allow them to vary during ...

    STTR Phase I 2010 Department of DefenseAir Force
  10. Gigawatt Nonlinear Transmission Lines (GW-NLTL)

    SBC: NumerEx            Topic: AF09BT14

    Nonlinear transmission lines offer new vistas in the generation of high power microwave wave (HPM) signals. All electromagnetic sources use an active medium to convert electrical energy to high frequency waves and ultra-wide band signals that can perform useful work. Traditional methods rely on electron beams for the active medium. Nonlinear transmission lines use nonlinear circuit elements to ...

    STTR Phase I 2010 Department of DefenseAir Force
US Flag An Official Website of the United States Government