You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY23 is not expected to be complete until September, 2024.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Open Call for Science and Technology Created by Early-Stage (e.g. University) Teams

    SBC: OmniScience LLC            Topic: AF19BT001

    This proposed Phase I STTR effort will be a collaboration between OmniScience LLC and the University of Colorado Colorado Springs (UCCS) Vision and Security Technology (VAST) Lab. The primary objective of this Phase I effort is to demonstrate feasibility of a brain computer interface (BCI) controller for augmented/virtual reality (AR/VR) and conventional screen displays, referred to herein as an A ...

    STTR Phase I 2019 Department of DefenseAir Force
  2. Open Call for Science and Technology Created by Early-Stage (e.g. University) Teams

    SBC: EXOSONIC, INC.            Topic: AF19BT001

    Exosonic is developing a quiet Mach 1.8, 4500 nmi range supersonic civil aircraft that uses aerodynamic shaping techniques to mute its sonic boom. Exosonic is teamed up with Stanford University Prof. Juan Alonso's Aerospace Design Lab to apply the lab's low boom shape optimization tools to design this aircraft to meet future low-boom regulatory standards. The aircraft's primary customers are comme ...

    STTR Phase I 2019 Department of DefenseAir Force
  3. Operating System Mechanisms for Many-Core Systems

    SBC: SECURBORATION, INC.            Topic: OSD11T04

    In the Phase I portion of this STTR, Securboration and renowned multicore expert Dr. Frank Mueller from North Carolina State University designed, developed, and benchmarked the proof-of-concept Pico-kernel Adaptive and Scalable Operating-system (PICASO) for many-core architectures. The Securboration Team took a scientific, experimentation-based approach to identifying and resolving shortcomings wi ...

    STTR Phase II 2013 Department of DefenseAir Force
  4. Optically Reconfigurable Smart Deployable Materials for Future Satellite Applications

    SBC: BLUECOM SYSTEMS & CONSULTING LLC            Topic: AF17AT018

    In this proposal, Bluecom Systems proposes to develop a framework in designing and manufacturing smart materials that can be used as adaptive radiating structures to operate at different frequencies, with different radiation patterns, and achieve polarization diversity. The solution proposed, based on optically pixilated Silicon or GaAs surfaces, can be used as reflective surfaces for reconfigurab ...

    STTR Phase II 2019 Department of DefenseAir Force
  5. Optical Refrigeration for Dramatically Improved Cryogenic Technology

    SBC: ThermoDynamic Films LLC            Topic: AF10BT02

    ABSTRACT: Optical refrigeration is currently the only demonstrated all-solid-state cryocooling technology. Optical cryocoolers are devices that use laser light to cool small crystal or glass cooling elements. The cooling element absorbs the laser light and reradiates it at higher energy, an example of anti-Stokes fluorescence. The difference between the energy of the outgoing and incoming light c ...

    STTR Phase II 2013 Department of DefenseAir Force
  6. Optimization of Sodium Guide Star Return using Polarization and/or Modulation Control

    SBC: ROCHESTER SCIENTIFIC LLC            Topic: AF19AT008

    Large ground-based telescopes require adaptive optics (AO) to correct for distortions introduced by atmospheric turbulence. In order to function, the AO system must track a bright point source. Although a natural star may be used, full sky coverage requires an artificial beacon created with a laser. The most common type of laser guide star (LGS) employs the mesospheric layer of sodium atoms at an ...

    STTR Phase I 2019 Department of DefenseAir Force
  7. Orthogonal Chip Based Electronic Sensors for Chemical Agents

    SBC: SEACOAST SCIENCE, INC.            Topic: AF08T015

    Recent years have seen a shift in threats to US national security. Today increasing focus for national security is management of terrorist activities. Deliberately exposing a civilian population to chemicals and explosives to cause harm represents a looming terrorist threat. Early detection and identification is a difficult but essential element to minimizing the threat. The Seacoast Science/U ...

    STTR Phase II 2010 Department of DefenseAir Force
  8. Orthogonal Chip Based Electronic Sensors for Chemical Agents

    SBC: SEACOAST SCIENCE, INC.            Topic: AF08T015

    Recent years have seen a shift in threats to US national security. Today increasing focus for national security is management of terrorist activities. Deliberately exposing a civilian population to chemicals and explosives to cause harm represents a looming terrorist threat. Early detection and identification is a difficult but essential element to minimizing the threat. The Seacoast Science/U ...

    STTR Phase II 2010 Department of DefenseAir Force
  9. Photoactivatable Protean Glass/Ceramic Materials for Imbedded Miniature Devices

    SBC: Chemat Technology, Inc.            Topic: AF10BT11

    ABSTRACT: The emerging technology of protean glass/ceramic materials, where RF and DC electrical properties can be imbued in the material volume by laser excitation and subsequent material transformation processes has great potential especially for the military applications. In this Phase I research, Chemat has successfully prepared a protean glass which is photosensitive. A pattern such as a 3 ...

    STTR Phase II 2013 Department of DefenseAir Force
  10. Photonic Integrated Circuit (PIC)-Enabled Chip-Scale Atomic Devices (CSAD) for Precision Navigation and Timing (PNT) Applications

    SBC: INTELLIGENT FIBER OPTIC SYSTEMS CORP            Topic: AF19BT001

    Sensors based on chip-scale atomic devices (CSADs) offer portability, manufacturability, and high performance for precision navigation and timing (PNT) missions. Key systems for PNT including atom interferometric gyroscopes (AIG) and atomic clocks. Ongoing advances and innovations in photonic integrated circuits (PICs) are directly relevant to CSADs. Different material bases have been used in PICs ...

    STTR Phase I 2019 Department of DefenseAir Force
US Flag An Official Website of the United States Government