You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY23 is not expected to be complete until September, 2024.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Modeling and Simulation for Design, Development, Testing and Evaluation of Autonomous Multi-Agent Models

    SBC: EDUWORKS CORPORATION            Topic: AF15AT14

    U.S. forces are benefiting from automation systems of unprecedented sophistication, empowered by advances in artificial intelligence (AI) and human-systems interaction. In air combat operations, onboard intelligent assistants monitor the aircraft, interpret and carry out commands, and report aircraft and system status, mission progress, threats and alerts. Because pilots and agents are part of a n ...

    STTR Phase II 2016 Department of DefenseAir Force
  2. Computation of Structural Energetic Materials Under Shock Loading: a Meso-Scale Framework

    SBC: STREAMLINE NUMERICS INC            Topic: AF16AT23

    Structural energetic materials or multifunctional energetic materials offer the ability to combine the high energy release rates of traditionalhigh explosives with structural strength. When successfully formulated therefore they can lead to light-weight, high-performance and hithertoinaccessible designs of munitions. The key feature of structural energetic materials (SEMs), perhaps even more so th ...

    STTR Phase I 2016 Department of DefenseAir Force
  3. Securing the Internet of Things in Tactical Environments

    SBC: Kalos Technologies, Inc.            Topic: AF16AT10

    Kalos Technologies Inc. (Kalos) and Temple University submit together this STTR Phase I proposal entitled Securing the Internet of Things in Tactical Environments to the Air Force in response to solicitation topic AF16-AT10: Securing the Internet of Things. It is the Kalos and Temples effort in the development of hardware-based security, embedded system security, secure communication, and secure I ...

    STTR Phase I 2016 Department of DefenseAir Force
  4. Bayesian Fusion of Heterogeneous Data for Unanticipated Event Detection

    SBC: METRON INCORPORATED            Topic: AF16AT12

    Metron, Inc. and Portland State University propose to design, develop, test and demonstrate algorithms that fuse heterogeneous sensor data at an information theoretic level and process these data as detection and tracking algorithms that can identify when new events or targets emerge that are not currently modeled. These algorithms have the potential to provide dramatic improvements in the capabil ...

    STTR Phase I 2016 Department of DefenseAir Force
  5. Heterogeneous Data Discovery Using Deep Neural Networks

    SBC: KickView Corporation            Topic: AF16AT12

    Improving feature extraction, event detection, and target classification in multi-sensor systems requires new mathematical methods and processing techniques. In addition, previous research and experience suggests that leveraging sensor data that has not experienced significant dimensionality reduction can preserve subtle features when processed jointly with other relevant data. However, traditiona ...

    STTR Phase I 2016 Department of DefenseAir Force
  6. Customizing Security for Diverse IoT Endpoints

    SBC: Samraksh Company, The            Topic: AF16AT10

    Endpoints in the Internet of Things (IoT) vary considerably in their hardware-software architecture and their functional capability. The IoT marketplace is unlikely to converge on a single or a few dominant endpoint platforms in the near term and potentially even long term future.This creates a major problem and an opportunity for securing IoT endpoints that are being increasingly integrated in cr ...

    STTR Phase I 2016 Department of DefenseAir Force
  7. Impact of Hypersonic Flight Environment on Electro-Optic/Infrared (EO/IR) Sensors

    SBC: Analysis and Applications Associates, Inc.            Topic: AF15AT40

    EO/IR sensors can provide high spatial resolution images using multiple frequency bands ranging from the visible to mid-wave IR. EO/IR sensors have been very successful for terrain imaging from subsonic aircraft and from satellites. Imaging using these platforms has been studied extensively. EO/IR sensors can provide high spatial resolution images using multiple frequency bands ranging from the v ...

    STTR Phase II 2016 Department of DefenseAir Force
  8. Environmentally-Compliant Kinetic Metallization Coating Materials for Corrosion and Wear Protection of Military Aircraft and Weapon Systems

    SBC: INNOVATIVE TECHNOLOGY INC            Topic: AF15AT31

    Coating materials and coating methods used to protect U.S. military aircraft and weapon systems from corrosion and wear are in need of environmentally benign alternatives in order to keep up with dynamic regulations associated with environment, safety, and occupational health. Thus, the Air Force is supporting research to develop alternatives to the dangerous materials identified on the OSD Emergi ...

    STTR Phase II 2016 Department of DefenseAir Force
  9. Reverberation Mitigation of Speech

    SBC: IN-DEPTH ENGINEERING CORPORATION            Topic: AF15AT17

    Speech data corrupted by reverberation, especially in combination with noise, has a drastically negative effect on the performance of speaker identification algorithms. Current approaches to the removal of reverb and noise rely on specific knowledge of room characteristics causing the reverb.The team of In-Depth Engineering and the University of Maryland propose to apply an innovative, generalized ...

    STTR Phase II 2016 Department of DefenseAir Force
  10. Active Control of a Scramjet Engine

    SBC: Ahmic Aerospace LLC            Topic: AF15AT19

    Scramjet engines are designed to operate across a wide Mach number range and typically incorporate isolator sections to provide sufficient back-pressure margin and prevent unstart. As military requirements become increasingly demanding, an active, closed-loop control system is necessary to maintain engine stability and power output. During Phase I, key components of a scramjet control system were ...

    STTR Phase II 2016 Department of DefenseAir Force
US Flag An Official Website of the United States Government