Topology Control Algorithms for Spacecraft Formation Flying Networks Under Connectivity and Time-Delay Constraints

Award Information
National Aeronautics and Space Administration
Award Year:
Phase II
Agency Tracking Number:
Solicitation Year:
Solicitation Topic Code:
Solicitation Number:
Small Business Information
Scientific Systems Company, Inc.
500 West Cummings Park, Suite 3000, Woburn, MA, 01801-6562
Hubzone Owned:
Minority Owned:
Woman Owned:
Principal Investigator:
Jovan Boskovic
Principal Investigator
(781) 933-5355
Business Contact:
Raman Mehra
Business Official
(781) 781-5355
Research Institution:
SSCI is proposing to develop, test and deliver a set of topology control algorithms and software for a formation flying spacecraft that can be used to design and evaluate candidate formation architectures. Properties of these topology control algorithms include: (a) Preserving the connectivity of the underlying state-dependent sensing graph during reconfiguration and re-targeting of the formation; (b) Achieving a balanced interplay between performance and robustness to communication delays; and (c) Using only local information to make local decisions that collectively guarantee global properties such as the network connectivity for formation flying. Phase I effort resulted in the development of a unified framework for the design and analysis of many topology control problems associated with formation flying spacecraft. A novel game-theoretic approach to network topology control was successfully applied to key trajectory design problems such as formation initialization and reconfiguration in the presence of local and global constraints. Phase II effort will deliver a complete set of algorithms and software tools to help the NASA TPF-I team plan and evaluate missions for candidate TPF-I architectures. In order to achieve these objectives, we plan to carry out the following tasks: (i) Further refinements and testing of the game-theoretic approach to state-dependent network synthesis problems and trajectory-following in the absence of centralization, (ii) Development and testing of convex parameterization of path-planning problems for multiple spacecraft formations, (iii) Demonstration of the application of the developed novel methods to TPF-I baseline mission. These algorithms and software will be tested on high fidelity formation flying testbeds at JPL such as FAST or FCT. Professor Mehran Mesabhi of University of Washington will provide technical support under the project.

* information listed above is at the time of submission.

Agency Micro-sites

SBA logo

Department of Agriculture logo

Department of Commerce logo

Department of Defense logo

Department of Education logo

Department of Energy logo

Department of Health and Human Services logo

Department of Homeland Security logo

Department of Transportation logo

Enviromental Protection Agency logo

National Aeronautics and Space Administration logo

National Science Foundation logo
US Flag An Official Website of the United States Government