Automated Deconvolution of 2D Optical Microscope Images

Award Information
Agency: Department of Health and Human Services
Branch: N/A
Contract: N/A
Agency Tracking Number: 1R43GM062062-01A1
Amount: $109,088.00
Phase: Phase I
Program: SBIR
Awards Year: 2001
Solicitation Year: N/A
Solicitation Topic Code: N/A
Solicitation Number: N/A
Small Business Information
877 25TH ST, WATERVLIET, NY, 12189
HUBZone Owned: N
Woman Owned: N
Socially and Economically Disadvantaged: N
Principal Investigator
 () -
Business Contact
Phone: (518) 276-2138
Research Institution
This proposal seeks to improve the performance of density functional theory (DFT) as implemented in the commercial quantum chemistry software package Q-Chem. DFT strikes the right balance between accuracy and computational cost, and is used to model molecular processes in a wide variety of disciplines, including biology, chemistry, and materials science. In the work of our Phase I SBIR, we developed a novel method, called IncDFT, short for incremental DFT, that reduced the computational cost of the most time consuming step in DFT energy calculations by a factor of two. IncDFT, takes advantage of the iterative nature of DFT calculations by reusing, rather than recomputing, computationally expensive quantities that differ insignificantly between iteration cycles. In this Phase II proposal, IncDFT will be developed for all major aspects of DFT calculations in Q-Chem, including computation of the energy with gradient corrected functionals, the evaluation of critical points on the potential energy surface, the computation of the analytical Hessian, and calculation of excited electronic states. Care will also be taken to maintain Q-Chem's excellent parallel efficiency. The successful completion of this project will allow Q-Chem to provide its end-users with a software package that will significantly reduce the execution time for calculations employing DFT, thereby greatly increasing their productivity accordingly. PROPOSED COMMERCIAL APPLICATIONS: DFT is the preferred computational model in many areas of chemical and biological research due to its accuracy. Still, its application can be time-consuming. The research in the Phase II proposal will produce a faster version of Q-Chem for DFT calculations, which will enable users to finish their calculations in less time, or run calculations on larger molecular systems with the same cost. Thus, their productivity will be significantly enhanced.

* Information listed above is at the time of submission. *

Agency Micro-sites

SBA logo
Department of Agriculture logo
Department of Commerce logo
Department of Defense logo
Department of Education logo
Department of Energy logo
Department of Health and Human Services logo
Department of Homeland Security logo
Department of Transportation logo
Environmental Protection Agency logo
National Aeronautics and Space Administration logo
National Science Foundation logo
US Flag An Official Website of the United States Government