Automated Deconvolution of 2D Optical Microscope Images

Award Information
Agency:
Department of Health and Human Services
Branch
n/a
Amount:
$0.00
Award Year:
2003
Program:
SBIR
Phase:
Phase I
Contract:
2R44GM062062-02
Award Id:
66479
Agency Tracking Number:
GM062062
Solicitation Year:
n/a
Solicitation Topic Code:
n/a
Solicitation Number:
n/a
Small Business Information
AUTOQUANT IMAGING, INC., 877 25TH ST, WATERVLIET, NY, 12189
Hubzone Owned:
N
Minority Owned:
N
Woman Owned:
N
Duns:
n/a
Principal Investigator:
DAVIDBIGGS
(518) 276-2138
BIGGS@AQI.COM
Business Contact:
TIMOTHYHOLMES
(518) 276-2138
HOLMES@AQI.COM
Research Institute:
n/a
Abstract
DESCRIPTION (provided by applicant): The objective of this project is to develop a commercial software product to improve the visualization and resolution of two-dimensional (2D) images obtained from optical microscopes. Diffraction and other optical distortions present in every 2D microscope image are characterized by the point-spread-function (PSF) of the system, but this information is rarely known accurately. Iterative blind deconvolution is a method that enables the PSF to be estimated directly from the blurred and noisy image. The system developed can derive all necessary information from the image itself, and requires no additional parameters about the microscope setup, as is currently the case for 3D deconvolution. The algorithm developed is automated, can reconstruct spatial frequency components beyond the diffraction limit, and is robust to noise contamination. Intensity quantification is retained for certain classes of images. Restoration of low-light level live-cell time-lapse imagery is an important application area. In confocal microscopy, signal intensity can be increased at the expense of a loss in spatial resolution, which can be compensated for using the 2D blind deconvolution. This then enables light exposure to be reduced, thus keeping cells healthier for longer. Other application areas include widefield fluorescence, differential interference contrast, total internal reflection fluorescence, and spinning disk confocal microscopy. Restoration is fast enough to be carried out online. The Phase II objectives are to commercialize the current algorithm developed, improve the automation, increase the robustness against noise, and further reduce processing times. The potential market is significantly larger than that for current 3D deconvolution software. Imagery from almost every microscope "could benefit because no specialized equipment is required and a diffraction limit is always present.

* information listed above is at the time of submission.

Agency Micro-sites


SBA logo

Department of Agriculture logo

Department of Commerce logo

Department of Defense logo

Department of Education logo

Department of Energy logo

Department of Health and Human Services logo

Department of Homeland Security logo

Department of Transportation logo

Enviromental Protection Agency logo

National Aeronautics and Space Administration logo

National Science Foundation logo
US Flag An Official Website of the United States Government