Targeted Delivery of Cardioprotective Drugs

Award Information
Agency:
Department of Health and Human Services
Branch
n/a
Amount:
$385,462.00
Award Year:
2010
Program:
SBIR
Phase:
Phase I
Contract:
1R43HL105167-01
Award Id:
96383
Agency Tracking Number:
HL105167
Solicitation Year:
n/a
Solicitation Topic Code:
NHLBI
Solicitation Number:
n/a
Small Business Information
115A Commerce Drive, Brookfield, CT, 06804
Hubzone Owned:
N
Minority Owned:
N
Woman Owned:
N
Duns:
966566465
Principal Investigator:
MARINA BACKER
(203) 775-5668
MBACKER@SIBTECH.COM
Business Contact:
BACKER JOSEPH
() -
jbacker@sibtech.com
Research Institute:
n/a
Abstract
DESCRIPTION (provided by applicant): Myocardial infarction is a disabling disease, with infarct size being a major determinant of mortality. To limit infarct size and improve functional recovery, the ischemic myocardium has to be reperfused. However, reper fusion itself causes irreversible damage to the previously ischemic myocardium. A significant part of cardiac injury is caused by apoptosis that starts immediately at the beginning of reperfusion. Therefore, reperfusion injury is considered an important ne w pharmacologic target for the treatment of patients with ongoing acute myocardial infarction. We propose to develop a targeted liposomal formulation of two drugs proven to protect myocardium through independent mechanisms. Drug-carrying liposomes will be decorated with human annexin V for targeting to phosphatidylserine exposed on the surface of cardiomyocytes at the early stages of apoptosis. Intravenous administration of such liposomes immediately before the beginning of reperfusion could serve as an adj unct therapy for angioplasty and/or thrombolytic administration, which are the standard of care for patients with myocardial infarction. The advantages of the proposed strategy are: 1) delivery of pharmacologically significant amounts of drugs in cardiomyo cytes from the first moments of reperfusion, when apoptosis is still reversible, 2) avoiding adverse effects of high-dose regimens that are necessary for free drugs, and 3) intracellular delivery of two drugs working via independent mechanisms increases th e probability of successful treatment. Targeted drug-loaded liposomes will be evaluated in primary cultures of cardiomyocytes. We will establish mechanism(s) of internalization in early apoptotic cells and evaluate the therapeutic potential of annexin-targ eted drug-loaded liposomes. Biodistribution, targeted drug delivery and the protective effects of the liposomes in vivo will be studied in a mouse model of myocardial ischemia/reperfusion. If successful, the proposed strategy will establish the feasibility of using annexin- targeted therapeutic liposomes as an adjunct therapy for myocardial infarction. It will also advance new technologies in developing therapeutic liposomes for targeted delivery to early-stage apoptotic cells. PUBLIC HEALTH RELEVANC E: We propose to test feasibility of developing a targeted liposomal formulation for two drugs proven to protect ischemic myocardium from lethal reperfusion injury through independent mechanisms. Drug-carrying liposomes will be decorated with human annexin V for targeting to phosphatidylserine exposed on the surface of cardiomyocites at the early stages of apoptosis. Intravenous administration of such liposomes immediately before the beginning of reperfusion could serve as an adjunct therapy for angioplasty and/or thrombolytic administration, which are the standard of care for patients with acute myocardial infarction.

* information listed above is at the time of submission.

Agency Micro-sites


SBA logo

Department of Agriculture logo

Department of Commerce logo

Department of Defense logo

Department of Education logo

Department of Energy logo

Department of Health and Human Services logo

Department of Homeland Security logo

Department of Transportation logo

Enviromental Protection Agency logo

National Aeronautics and Space Administration logo

National Science Foundation logo
US Flag An Official Website of the United States Government