You are here

Axonal Transport HTS Platform for Neurodegeneration Drug Discovery

Award Information
Agency: Department of Health and Human Services
Branch: National Institutes of Health
Contract: 1R41NS090693-01
Agency Tracking Number: R41NS090693
Amount: $225,000.00
Phase: Phase I
Program: STTR
Solicitation Topic Code: 106
Solicitation Number: PA14-072
Solicitation Year: 2015
Award Year: 2015
Award Start Date (Proposal Award Date): 2015-06-01
Award End Date (Contract End Date): 2017-05-31
Small Business Information
5500 NOBEL DR, STE 230
Madison, WI 53711-4951
United States
DUNS: 119165251
HUBZone Owned: No
Woman Owned: No
Socially and Economically Disadvantaged: No
Principal Investigator
 (608) 441-2966
Business Contact
Phone: (608) 227-4501
Research Institution
United States

 Domestic nonprofit research organization

DESCRIPTION provided by applicant Neurodegenerative diseases that affect motor neurons such as PD ALS and HD represent an enormous unmet medical need that is growing with the aging population Existing treatments have little or no effect on the course of disease and patients have to cope with the loss of brain and body function for the rest of their lives Defects in the transport of organelles and biomolecules through axons is a hallmark of early stage disease and there is strong evidence that it contributes to the andquot dying backandquot pathology seen in most motor neuron diseases which is characterized by early degeneration of the synapse and the axon followed by damage to the soma and eventual neuronal loss Therefore discovery of drugs that prevent or rescue axonal transport defects is a compelling strategy for early intervention in neurodegeneration However the difficulty in tracking cargo movement through axons has prevented the scaling of assays for high throughput screening HTS and discouraged the use of physiologically relevant models incorporating glial cells and three dimensional D tissue architecture We will overcome these technical hurdles by using BellBrookandapos s proprietary iuvo R microchannel plate technology to enable automated high content analysis HCA of axonal transport in D cocultures of neurons and astrocytes derived from induced pluripotent stem cells iPSC Flow based collagen patterning in microchannels will be used to align both cell types with the longitudinal axis of the channel Alignment of neurons combined with the height restrictions imposed by the microchannel will make it vastly simpler to track the movement of axonal cargoes allowing the use of streamlined image acquisition that is scalable for high throughput screening HTS Moreover a uniform cell polarity along collagen andquot tracksandquot will resemble in vivo tissue architecture much more closely than monolayers of randomly oriented neurons This is a collaborative effort leveraging the microfluidics and expertise of Dr David Beebe John D MacArthur Professor in the Department of Biomedical Engineering at UW Madison and Dr Robert Loweryandapos s long track record in developing enabling HTS assay products at BellBrook Labs We will optimize D coculture and neural cell alignment iuvo R Microchannel plate at BellBrook Aim while Dr Beebeandapos s methods in the existing group develops a new prototype microchannel slide channels with modifications to optimize optics and axon patterning for image based Aligned D neural coculture for HTS imaging of axonal transport Microchannel plates analysis of axonal transport Aim Lastly we will have arrays of precisely patterned channels in a standard SLAS footprint shown is iuvo R use the new device to streamline methods for Microchannel with channels Longitudinal alignment of astrocytes gray and neurons along collagen fibrils combined with optimization of channel design will enable image based tracking of axonal cargo transport rapid scalable imaging of axonal transport The microchannel plates are compatible establishing feasibility for scaling the device and with standard liquid dispensing and automated microscopy equipment enabling robust high throughput assays for axonal transport in a D tissue like microenvironment methods to HTS in Phase II To our knowledge the proposed microchannel platform for aligned D cocultures will be the first in vitro model for probing axonal transport ina D tissue like microenvironment and the first HTS scalable assay An HTS compatible phenotypic assay platform for axonal transport could enable the discovery of drugs that prevent or slow neuronal loss early in the disease process and thereby accelerate the development of more effective treatments for devastating neurodegenerative diseases that affect a growing fraction of our aging population

PUBLIC HEALTH RELEVANCE Transport of organelles and biomolecules between cell bodies and nerve endings known as axonal transport is critical to the function or neurons and this process often becomes defective early in the course of neurodegenerative diseases like Parkinsonandapos s disease and Multiple Sclerosis This proposal seeks to develop in vitro assays to identify new drugs that will prevent or rescue axonal transport defects so that neurodegeneration can be slowed or prevented before irreversible damage occurs

* Information listed above is at the time of submission. *

US Flag An Official Website of the United States Government