Active Flow Control with Adaptive Design Techniques for Improved Aircraft Safety

Award Information
Agency:
National Aeronautics and Space Administration
Branch
n/a
Amount:
$599,857.00
Award Year:
2008
Program:
STTR
Phase:
Phase II
Contract:
NND08AA58C
Award Id:
80732
Agency Tracking Number:
050169
Solicitation Year:
n/a
Solicitation Topic Code:
n/a
Solicitation Number:
n/a
Small Business Information
1410 Sachem Place, Suite 202, Charlottesville, VA, 22901
Hubzone Owned:
N
Minority Owned:
N
Woman Owned:
N
Duns:
120839477
Principal Investigator:
Jason Burkholder
Principal Investigator
() -
burkholder@bainet.com
Business Contact:
Connie Hoover
Business Official
(434) 973-1215
Research Institution:
University of Virginia

PO Box 400195
Charlottesville, VA, 22904 4257
(434) 924-4270
Nonprofit college or university
Abstract
The overall objective of this STTR effort is to evaluate and demonstrate the potential for well-designed, strategically-located synthetic jet actuators to provide improved aircraft safety by: (1) delaying wing stall and improving aircraft controllability at high angles of attack and (2) providing low-cost actuation redun-dancy to improve controllability in the event of a mechanical control surface failure. Delaying flow separa-tion (i.e., wing stall) and providing "back-up" control power could allow an aircraft to recover from adverse conditions (due to a control surface failure, pilot/autopilot error, etc.) that would otherwise result in a loss of control. Flow control studies have shown that synthetic jet actuators are efficient devices for controlling separated internal and external flows. However, an obstacle to the widespread application of synthetic jet actuators for practical flight control is that modulated input signals to achieve closed-loop flow control objectives have been shown to be complex. Barron Associates, the University of Virginia, and the University of Wyoming propose to develop a software toolbox for the creation of adaptive control systems for actuators having complex, nonlinear dynamics. The Phase II effort will culminate in a wind tunnel test that quanti-fies the safety improvement potential offered by adaptively-controlled synthetic jet actuators.

* information listed above is at the time of submission.

Agency Micro-sites


SBA logo

Department of Agriculture logo

Department of Commerce logo

Department of Defense logo

Department of Education logo

Department of Energy logo

Department of Health and Human Services logo

Department of Homeland Security logo

Department of Transportation logo

Enviromental Protection Agency logo

National Aeronautics and Space Administration logo

National Science Foundation logo
US Flag An Official Website of the United States Government