High-Bandwidth Noninvasive Sensor Systems For Measuring Enthalpy and Mass Flux in Detonation-Powered Devices

Award Information
Agency: Department of Defense
Branch: Air Force
Contract: FA8650-10-C-2112
Agency Tracking Number: F083-124-0861
Amount: $1,497,550.00
Phase: Phase II
Program: SBIR
Awards Year: 2010
Solicitation Year: 2008
Solicitation Topic Code: AF083-124
Solicitation Number: 2008.3
Small Business Information
5100 Springfield Street, Suite 301, Dayton, OH, -
DUNS: 782766831
HUBZone Owned: N
Woman Owned: Y
Socially and Economically Disadvantaged: N
Principal Investigator
 Sukesh Roy
 (937) 255-3115
Business Contact
 Sukesh Roy
Title: CEO
Phone: (937) 255-3115
Email: contact@spectralenergies.com
Research Institution
The objective of the proposed Phase-II research effort is to build and deliver a hyperspectral sensor to perform velocity, temperature, pressure, and H2O concentration measurements at the end of a detonation tube and the exhaust of a detonation-powered turbine at a rate of 50 kHz. These measurements will help quantify the efficiencies of detonation-powered devices. High-speed measurements of temperature, H2O mole fraction, pressure, and velocity will allow determination of the enthalpy and mass-flux in-and-out of the detonation-powered devices. We have successfully demonstrated this approach during the Phase-I research effort. In the phase II effort, one-piece, all-silica fiber-collimators suitable for measurements in the detonation environment along multiple lines-of-sight will also be designed, delivered, and demonstrated in a suitable test rig in consultation with AFRL scientists. Despite using absorption spectroscopy for determining the temperature, pressure, and H2O concentration, the hyperspectral technology is fundamentally different from typical diode laser-based absorption sensors and has many advantages, specifically: monitoring many spectral features over a wide spectral range at very high speeds (~ 50 kHz) and thereby providing more accurate measurements of more parameters than a typical diode-laser strategy. The proposed hyperspectral sensor system offers flexible coverage of such a broad spectral range that it is automatically suitable for virtually all applications within 5 psia to 1000 psia for a temperature range of 270K to 3000K. BENEFIT: Development of compact sensor systems for measuring temperature, pressure, and velocity at a rate of 50 kHz will enable engine manufacturers to investigate the performance of PDEs and detonation-powered devices and will also provide valuable high-bandwidth data to the numerical modeler. This sensor system will also help studying the ignition and flame growth phenomena and monitor the combustion processes and relevant dynamic phenomena at realistic operating conditions for the first time. This capability is particularly critical for the design and modeling of advanced, detonation-powered or ultra-compact, low-emission, gas turbine engines and for development of real-time combustion-control strategies. This technology will yield significant payoffs in military and commercial aviation as well as land- and sea-based power generation, and has broad impacts for on-board sensing and control. Other high-speed gasdynamic research as in shock tubes and explosion studies are poised to benefit as well. Beyond gasdynamic measurements, the sensing approach has applicability in microscopy and in biological imaging. For example, the hyperspectral sources developed in this effort could supplant swept-sources currently used for 4-D optical coherence tomography, offering new imaging capabilities such as greater ranging depth. Also, with minor modifications, the sensor system might become important in pulsed magnetic fields research as well as homeland security applications such as imaging of hazardous gases.

* Information listed above is at the time of submission. *

Agency Micro-sites

SBA logo
Department of Agriculture logo
Department of Commerce logo
Department of Defense logo
Department of Education logo
Department of Energy logo
Department of Health and Human Services logo
Department of Homeland Security logo
Department of Transportation logo
Environmental Protection Agency logo
National Aeronautics and Space Administration logo
National Science Foundation logo
US Flag An Official Website of the United States Government