SBIR Phase I:Microwave Surface-Wave Plasma Source for Large-Area, High-Throughput, High-Quality Thin-Film Manufacturing for Solar Panels and Semiconductors

Award Information
Agency: National Science Foundation
Branch: N/A
Contract: 1014309
Agency Tracking Number: 1014309
Amount: $150,000.00
Phase: Phase I
Program: SBIR
Awards Year: 2010
Solicitation Year: 2010
Solicitation Topic Code: NM
Solicitation Number: NSF 09-609
Small Business Information
2109 South Oak Street, Champaign, IL, 61820
DUNS: 119289051
HUBZone Owned: Y
Woman Owned: N
Socially and Economically Disadvantaged: N
Principal Investigator
 Brian Jurczyk
 (708) 955-6691
Business Contact
 Brian Jurczyk
Title: PhD
Phone: (708) 955-6691
Research Institution
This Small Business Innovation Research (SBIR) Phase I project aims to develop an innovative microwave surface-wave plasma source for low-cost, large-area, high-throughput conformal thin-film growth. A scalable architecture will be designed to generate high-pressure, low-temperature, narrow-gap, high-density, and damage-free microwave plasmas without the need for external magnetic fields. This project is expected to demonstrate the high-speed and large-area deposition of high-quality hydrogenated nanocrystalline and amorphous silicon thin films for high-efficiency tandem solar cells. The broader/commercial impact of this project will be the potential to provide a new plasma source with high-speed, large-area and high-quality thin film growth for applications in photovoltaic cells and other semiconductor devices. When scaled to large-areas, current Plasma-Enhanced Chemical Vapor Deposition (PECVD) and Plasma-Enhanced Atomic Layer Deposition (PEALD) capacitive systems have limitations due to large transient Radio Frequency (RF) voltages, discharge non-uniformity and generation of arcs and surface defects between two active parallel plates. In this project, a microwave surface-wave plasma source will be developed to overcome these challenges. In addition, Starfire Industries will partner with the Center for Plasma-Material Interactions at the University of Illinois to provide educational opportunities to students.

* Information listed above is at the time of submission. *

Agency Micro-sites

SBA logo
Department of Agriculture logo
Department of Commerce logo
Department of Defense logo
Department of Education logo
Department of Energy logo
Department of Health and Human Services logo
Department of Homeland Security logo
Department of Transportation logo
Environmental Protection Agency logo
National Aeronautics and Space Administration logo
National Science Foundation logo
US Flag An Official Website of the United States Government