DNA repair deficient cells for analysis

Award Information
Agency:
Department of Health and Human Services
Branch
n/a
Amount:
$2,526,826.00
Award Year:
2010
Program:
SBIR
Phase:
Phase II
Contract:
2R44GM087798-02
Award Id:
93842
Agency Tracking Number:
GM087798
Solicitation Year:
n/a
Solicitation Topic Code:
NIGMS
Solicitation Number:
n/a
Small Business Information
TREVIGEN, INC., 8405 HELGERMAN COURT, GAITHERSBURG, MD, -
Hubzone Owned:
N
Minority Owned:
N
Woman Owned:
N
Duns:
807864772
Principal Investigator:
JAY GEORGE
(301) 216-2800
JGEORGE@TREVIGEN.COM
Business Contact:
GEORGE JAY
() -
Research Institution:
n/a
Abstract
DESCRIPTION (provided by applicant): Successful completion of Phase I led to the development a panel of human cell lines, each deficient in one of the eleven DNA glycosylase enzymes. Depletion of target mRNA was as high as 95%, with corresponding depletion of target protein levels and enzymatic activity. To expand background diversity, the same shRNA lentiviruses were also used to develop parallel cell line panels in diferent tumor backgrounds, including glioma and breast cancer cell lines, demonstrating si milar target mRNA depletion across different tumor cell backgrounds. Gene expression knockdown of the DNA glycosylases exemplify the impact of DNA repair defects on the human transcriptome. As an example of the far reaching potential for a panel of DNA rep air deficient cell lines, we show that DNA glycosylase deficiency modulated both the transcriptome and epigenome, implicating some DNA glycoylases in methylation maintenance and genome expression diversity. Further, by combining both DNA glycosylase and BR CA1 knockdown, we have begun to investigate the requirement for DNA glycosylases in the effectiveness of PARP inhibitors in a BRCA1 knockdown tumor line. Phase II of the project wil utilize the successful work-flow paradigm optimized in Phase I for the dev elopment, functional characterization, cell banking and transcriptome analysis of isogenic human cel lines deficient in all known DNA repair genes. These include genes involved in Base Excision Repair, Direct Reversal of Damage, Mismatch Excision Repair, N ucleotide Excision Repair, Homologous Recombination, Non- homologous End-Joining, the modulation of nucleotide pools, DNA polymerases, editing and processing nucleases, the Rad6 pathway, Chromatin Structure, DNA Repair genes defective in diseases and conse rved DNA Damage Response genes. The studies described in Aim 1 involve the preparation of the shRNA expressing lentiviruses, transduction and generation of three different human tumor cell knockdown panels for all known DNA repair genes (gt150), followed b y the mRNA expression characterization (qRT-PCR) of the knockdown cell lines and optimized scale-up and step-wise characterization to prepare for cell line distribution (Cell Banking). In aim 2, the cell lines will be validated for the expected DNA repair functional deficiency by protein expression profiling and genotoxin challenge. Finally (Aim 3), whole-genome transcriptional profiles will be conducted to quantitate transcriptional reprogramming mediated by changes in endogenous DNA repair capacity and wh ere appropriate, following specific genotoxic stress. With the expectation that DNA repair capacity impacts basic cellular functions both spontaneously and in response to genotoxic stress, alters the transcriptional and epigenetic landscape and dictates th e cellular response to stress, the development of a complete panel of isogenic DNA repair deficient cell lines across multiple backgrounds will be a valuable platform for gene and drug discovery, validation of inhibitor specificity and the identification o f response biomarkers and novel targets for gene/drug synthetic-lethality combinations. The ready availability of this panel of cell lines will permit both academic and pharmaceutical scientists to study the molecular etiology of tumor genomic instability and to exploit it in oncology research. We envision robust market demand for the cell lines and information that relates to the global transcriptome. PUBLIC HEALTH RELEVANCE: In this Phase II proposal we plan to utilize the successful work-flow para digm optimized in Phase I for the cell-line development and transcriptome analysis of isogenic human cells lines deficient in all known DNA repair genes. These highly characterized and annotated isogenic cell lines will form the basis for a platform for ge ne and drug discovery, validation of inhibitor specificity and the identification of response biomarkers and novel targets for gene/drug synthetic-lethality combinations.

* information listed above is at the time of submission.

Agency Micro-sites


SBA logo

Department of Agriculture logo

Department of Commerce logo

Department of Defense logo

Department of Education logo

Department of Energy logo

Department of Health and Human Services logo

Department of Homeland Security logo

Department of Transportation logo

Enviromental Protection Agency logo

National Aeronautics and Space Administration logo

National Science Foundation logo
US Flag An Official Website of the United States Government