Lightweight Hybrid Ablator Incorporating Aerogel-Filled Open-Cell Foam Structural Insulator, Phase II

Award Information
Agency:
National Aeronautics and Space Administration
Branch
n/a
Amount:
$600,000.00
Award Year:
2010
Program:
SBIR
Phase:
Phase II
Contract:
NNX10CA26C
Award Id:
90560
Agency Tracking Number:
085369
Solicitation Year:
n/a
Solicitation Topic Code:
X8
Solicitation Number:
n/a
Small Business Information
12173 Montague Street, Pacoima, CA, 91331
Hubzone Owned:
N
Minority Owned:
N
Woman Owned:
N
Duns:
052405867
Principal Investigator:
Brian Williams
Principal Investigator
(818) 899-0236
brian.williams@ultramet.com
Business Contact:
Craig Ward
Engineering Administrative Mgr
(818) 818-0236
craig.ward@ultramet.com
Research Institution:
n/a
Abstract
In previous work for NASA and DoD, Ultramet developed lightweight open-cell foam insulators composed of a carbon or ceramic structural foam skeleton filled with a high temperature nanoscale aerogel insulator. Structural integrity and high insulation behavior have been demonstrated when used in combination with a non-ablating, coated carbon/carbon or ceramic matrix composite outer shell. In Phase I, Ultramet demonstrated the initial feasibility of a foam-reinforced hybrid ablator/aerogel insulator thermal protection system (TPS) in which a portion of the thickness (front face) of a low thermal conductivity structural foam was infiltrated with an ablative material and the remainder of the thickness (back face) was filled with the high temperature aerogel insulator. The potential benefit is a reduction in the ablator mass required to reject the aerothermal heat load. The three-dimensionally interconnected foam reinforcement is anticipated to provide increased char retention relative to alternative fiber and honeycomb reinforcements. The vehicle interface temperature will be controlled by the highly insulating aerogel-filled portion of the foam structure. In Phase II, Ultramet will team with Materials Research & Design (MR&D) for continued thermomechanical design optimization, and ARA Ablatives Laboratory for ablator infiltration of Ultramet structural foam. Performance will be evaluated through high heat flux ablation testing and a demonstration of scaleup potential up to 18" diameter.

* information listed above is at the time of submission.

Agency Micro-sites


SBA logo

Department of Agriculture logo

Department of Commerce logo

Department of Defense logo

Department of Education logo

Department of Energy logo

Department of Health and Human Services logo

Department of Homeland Security logo

Department of Transportation logo

Enviromental Protection Agency logo

National Aeronautics and Space Administration logo

National Science Foundation logo
US Flag An Official Website of the United States Government