Lightweight Hybrid Ablator Incorporating Aerogel-Filled Open-Cell Foam Structural Insulator, Phase II

Award Information
Agency: National Aeronautics and Space Administration
Branch: N/A
Contract: NNX10CA26C
Agency Tracking Number: 085369
Amount: $600,000.00
Phase: Phase II
Program: SBIR
Awards Year: 2010
Solicitation Year: 2008
Solicitation Topic Code: X8.01
Solicitation Number: N/A
Small Business Information
12173 Montague Street, Pacoima, CA, 91331-2210
DUNS: 052405867
HUBZone Owned: N
Woman Owned: N
Socially and Economically Disadvantaged: N
Principal Investigator
 Brian Williams
 Principal Investigator
 (818) 899-0236
Business Contact
 Craig Ward
Title: Engineering Administrative Mgr
Phone: (818) 818-0236
Research Institution
In previous work for NASA and DoD, Ultramet developed lightweight open-cell foam insulators composed of a carbon or ceramic structural foam skeleton filled with a high temperature nanoscale aerogel insulator. Structural integrity and high insulation behavior have been demonstrated when used in combination with a non-ablating, coated carbon/carbon or ceramic matrix composite outer shell. In Phase I, Ultramet demonstrated the initial feasibility of a foam-reinforced hybrid ablator/aerogel insulator thermal protection system (TPS) in which a portion of the thickness (front face) of a low thermal conductivity structural foam was infiltrated with an ablative material and the remainder of the thickness (back face) was filled with the high temperature aerogel insulator. The potential benefit is a reduction in the ablator mass required to reject the aerothermal heat load. The three-dimensionally interconnected foam reinforcement is anticipated to provide increased char retention relative to alternative fiber and honeycomb reinforcements. The vehicle interface temperature will be controlled by the highly insulating aerogel-filled portion of the foam structure. In Phase II, Ultramet will team with Materials Research & Design (MR&D) for continued thermomechanical design optimization, and ARA Ablatives Laboratory for ablator infiltration of Ultramet structural foam. Performance will be evaluated through high heat flux ablation testing and a demonstration of scaleup potential up to 18" diameter.

* Information listed above is at the time of submission. *

Agency Micro-sites

SBA logo
Department of Agriculture logo
Department of Commerce logo
Department of Defense logo
Department of Education logo
Department of Energy logo
Department of Health and Human Services logo
Department of Homeland Security logo
Department of Transportation logo
Environmental Protection Agency logo
National Aeronautics and Space Administration logo
National Science Foundation logo
US Flag An Official Website of the United States Government