In-vivo optical molecular imaging with Dynamic Contrast Enhancement (DyCE)

Award Information
Agency: Department of Health and Human Services
Branch: N/A
Contract: 1R43EB008627-01
Agency Tracking Number: EB008627
Amount: $167,462.00
Phase: Phase I
Program: SBIR
Awards Year: 2008
Solicitation Year: 2008
Solicitation Topic Code: N/A
Solicitation Number: PHS2007-2
Small Business Information
CAMBRIDGE RESEARCH AND INSTRUMENTATION
CAMBRIDGE RESEARCH, AND INSTRUMENTATION, INC., WOBURN, MA, 01801
DUNS: 147950828
HUBZone Owned: Y
Woman Owned: Y
Socially and Economically Disadvantaged: Y
Principal Investigator
 RICHARD LEVENSON
 (781) 935-9099
 RLEVENSON@CRI-INC.COM
Business Contact
Phone: (781) 935-9099
Email: tles@cri-inc.com
Research Institution
N/A
Abstract
DESCRIPTION (provided by applicant): Fluorescence-based molecular Imaging in small animals is having a major impact on drug development and disease research. However, a significant challenge to imaging targeted fluorescent markers in vivo remains: unless t he labeled regions are located superficially; localization, quantitation and host organ identification are impeded by the effects of light scattering and absorption. Orthotopic tumor and disease models are increasingly preferred over less biologically rele vant subcutaneous xenografts. In such studies, substantial difficulties are encountered in longitudinal studies where animals are growing and are positioned differently for each measurement. We believe that a single imaging advance could address many of th ese issues, and advance the utility of in-vivo molecular imaging: an exact anatomical co-registration technique that does not rely on multimodal techniques. This proposal describes dynamic molecular imaging (DMI), an approach that can provide co-registered anatomical information by exploiting in-vivo pharmacokinetics of dyes in small animals in a simple and inexpensive way. We demonstrate that by acquiring a time-series of optical images during injection of an inert dye, we can repeatably and accurately del ineate the major internal organs of mice using optical imaging alone. This is possible because each major organ is illuminated by the kinetics of dye passing through it in such a manner as to make it distinguishable from other structures. Spatiotemporal analysis can exploit these characteristic time courses to allow the body-surface representation of each organ to be visualized. These in- vivo anatomical maps can be overlaid onto simultaneously acquired images of a targeted molecular probe (detected and d istinguished from the mapping dye via multispectral imaging techniques, if necessary) to significantly aid in identification of the probe's anatomical and physical location. Using CRi's existing and prototype 2D, 2.5D and true 3D multispectral mouse imag ing systems, we propose to test and refine a DMI approach. Based on our findings to date, we will examine and exploit in-vivo pharmacokinetics of the near-infrared dye, indocyanine green, to generate delineated surface projections of individual organs. Co- registering this surface map with surface projections of detected targeted labels will allow the targeted probe's 3D spatial location to be inferred. This information can further be used to improve quantitative accuracy in longitudinal molecular imaging st udies of deep targets.

* information listed above is at the time of submission.

Agency Micro-sites

SBA logo
Department of Agriculture logo
Department of Commerce logo
Department of Defense logo
Department of Education logo
Department of Energy logo
Department of Health and Human Services logo
Department of Homeland Security logo
Department of Transportation logo
Environmental Protection Agency logo
National Aeronautics and Space Administration logo
National Science Foundation logo
US Flag An Official Website of the United States Government