Development of an organotypic in-vitro model of the blood-brain barrier

Award Information
Agency:
Department of Health and Human Services
Branch
n/a
Amount:
$190,632.00
Award Year:
2010
Program:
SBIR
Phase:
Phase I
Contract:
1R43NS070440-01
Award Id:
96479
Agency Tracking Number:
NS070440
Solicitation Year:
n/a
Solicitation Topic Code:
NINDS
Solicitation Number:
n/a
Small Business Information
VISIONGATE, INC., 1509 56TH AVE CT NW, GIG HARBOR, WA, 98335
Hubzone Owned:
N
Minority Owned:
N
Woman Owned:
N
Duns:
158286786
Principal Investigator:
THOMASNEUMANN
(206) 221-3813
NEUMANN@VISIONGATE3D.COM
Business Contact:
THOMASNEUMANN
() -
nelson@visiongate3d.com
Research Institute:
n/a
Abstract
DESCRIPTION (provided by applicant): The blood-brain barrier (BBB) is a tight barrier formed by microvessels and capillaries controlling the passage of nutrients, fluids, metabolic products and drugs between the blood and the brain. Imbalance of the BB B is involved in a number of major pathologies afflicting the brain, such as Alzheimer's disease, stroke, and cancer. Although neurotherapeutics are among the largest and fastest growing markets in the pharmaceutical industry, progress is currently impaire d by the lack of in-vitro assays that reliably predict in-vivo BBB permeability. None of the existing models adequately replicates the in-vivo organotypic microenvironment, which is seen as a key for achieving in-vivo-like functionality. We have previously developed a 3D model for the study of in-vitro angiogenesis, consisting of small fluidic devices with a collagen-filled chamber. We intend to advance our model into an organotypic in-vitro model of the blood-brain barrier with the following main attribute s: (1) a tissue-engineered endothelial-cell microvessel, surrounded by pericytes and astrocytes arranged in physiological ratio and architecture; (2) direct contact between endothelial cells, pericytes, and astrocytes; (3) an extracellular matrix (ECM) tha t resembles the interstitial environment of the CNS; (4) luminal flow providing shear stress to the endothelium; (5) tightly-controlled physical and chemical conditions; (6) a mass- produced, disposable fluidic device that can be adapted for use in existin g high-throughput analysis platforms. In Phase 1, we will establish the prototype of a model that comprises a central BBB-microvessel in a brain-specific extracellular matrix, surrounded by pericytes and astrocytes--cells that induce and maintain barrier t ightness. In Phase 2 we will pursue the development of a commercial product, including the adaptation of the fluidic device to high- throughput analysis platforms. We predict that our model will facilitate a significant progress in the therapy of a number of devastating diseases. PUBLIC HEALTH RELEVANCE: A major obstacle to the successful development of drugs that treat diseases of the central nervous system (CNS) such as Alzheimer's, Parkinson's, stroke, brain cancers, and metastasis to the brai n, is the inability of these drugs to cross the blood-brain barrier (BBB). This natural barrier, whose function is to protect CNS from potentially harmful molecules, unfortunately also prevents penetration of potentially beneficial drugs. The difficulty in assessing whether or not drugs will cross the BBB makes the development of new neurologic drugs a difficult and unusually unsuccessful task. For this reason, in- vitro models that successfully predict in vivo drug BBB-permeability are of paramount importa nce for the neuropharmaceutical industry. We propose the development of an in- vitro model that mimics the natural BBB architecture, including perfused microvessels This model promises to become a valuable system for drug developers as well as to CNS resea rchers in academia.

* information listed above is at the time of submission.

Agency Micro-sites


SBA logo

Department of Agriculture logo

Department of Commerce logo

Department of Defense logo

Department of Education logo

Department of Energy logo

Department of Health and Human Services logo

Department of Homeland Security logo

Department of Transportation logo

Enviromental Protection Agency logo

National Aeronautics and Space Administration logo

National Science Foundation logo
US Flag An Official Website of the United States Government