Micromachined Single Crystal HF Arrays for Interventional Cardiology Ultrasound

Award Information
Agency: Department of Health and Human Services
Branch: N/A
Contract: 2R44EB001516-02A2
Agency Tracking Number: EB001516
Amount: $385,565.00
Phase: Phase II
Program: SBIR
Awards Year: 2007
Solicitation Year: 2007
Solicitation Topic Code: N/A
Solicitation Number: N/A
Small Business Information
DUNS: 782683007
HUBZone Owned: N
Woman Owned: Y
Socially and Economically Disadvantaged: Y
Principal Investigator
 (814) 238-7485
Business Contact
Phone: (814) 238-7485
Email: kevin@trstechnologies.com
Research Institution
DESCRIPTION (provided by applicant): Atherosclerosis and coronary artery disease affect a large number of people in the United States, and is a leading cause of death. Intravascular ultrasound (IVUS) has begun to make a significant impact in diagnosis and treatment of these conditions. It has been used in lesion visualization, stent placement and stent monitoring, and has advantages over other modalities in that it is capable of distinguishing various tissue types. A number of visualization methods such as elastography and RF analysis have advanced IVUS, though these require a large bandwidth transducer. Many existing transducers do not have adequate performance, and require acoustic mirrors or are not directed in a way that provides the most clinical significance. In Phase I, TRS Technologies and Penn State University developed a micromachining method to create composite piezoelectrics using single crystals. This PMN-PT material has a very high electromechanical coupling coefficient (k33 > 90%) which provides ultrasound transducers with an inherently wide bandwidth. In the Phase I program, a single element transducer was constructed that exhibited 80% bandwidth with one acoustic matching layer, which is significantly higher than current commercial IVUS transducers. For the Phase II program, TRS proposes to build on these results by constructing an IVUS segmented annular array with broad bandwidth for use in interventional cardiology. This device would provide a three dimensional representation of the arteries, and a forward looking architecture. In the program, the array transducer will be modeled, fabricated and evaluated using in vivo animal studies.

* Information listed above is at the time of submission. *

Agency Micro-sites

SBA logo
Department of Agriculture logo
Department of Commerce logo
Department of Defense logo
Department of Education logo
Department of Energy logo
Department of Health and Human Services logo
Department of Homeland Security logo
Department of Transportation logo
Environmental Protection Agency logo
National Aeronautics and Space Administration logo
National Science Foundation logo
US Flag An Official Website of the United States Government