Windage Loss Reduction for High Speed Electrical Machinery

Award Information
Agency: Department of Defense
Branch: Air Force
Contract: FA8650-10-C-2098
Agency Tracking Number: F081-059-0426
Amount: $749,135.00
Phase: Phase II
Program: SBIR
Awards Year: 2010
Solicitation Year: 2008
Solicitation Topic Code: AF081-059
Solicitation Number: 2008.1
Small Business Information
124 Commonwealth Cir, Charlottesville, VA, -
DUNS: 605736862
HUBZone Owned: N
Woman Owned: N
Socially and Economically Disadvantaged: N
Principal Investigator
 Erik Swanson
 President/Chief Engineer
 (434) 296-6094
Business Contact
 Erik Swanson
Title: President/Chief Engineer
Phone: (434) 296-6094
Research Institution
Designers of modern, high speed electrical power generation machinery have had great success in increasing the overall system efficiency of these machines over the past few decades. These increases in efficiency are extremely important for applications in modern tactical aircraft, where any losses ultimately heat the fuel. As machine power levels increase to meet aircraft system demands, fuel temperature limits can lead to undesirable tradeoffs. One power loss mechanism that designers have not significantly reduced is windage losses. During Phase I, Xdot Engineering and Analysis analytically showed the feasibility of a new approach for reducing windage losses. During the Phase II effort, Xdot will optimize this approach and demonstrate optimized implementations in a full scale test rig at relevant speeds. The optimization effort will be performed using a CFD analysis that will be validated with new experimental windage loss data generated during the Phase II effort. The experimental portion of the project will be performed using a new windage loss test rig designed specifically to provide accurate rotor windage loss measurements at speeds of up to 60,000 RPM with full scale test hardware. BENEFIT: The proposed Phase II effort will end with the demonstration of an optimized windage loss reduction technology suitable for use in a variety of high speed, electrical rotating machinery. This new windage loss reduction technology will help these machines meet increasingly challenging efficiency and total system power loss targets. The new Xdot technology does not increase system weight, is expected to have a reasonable integration cost, and is applicable to both induction and permanent magnet machines, including secondary or auxiliary power units, as well as main propulsion engine driven starter/generators. It also offer synergistic benefits with regards to rotor cooling. The effort to achieving this end goal will also include the generation of a high quality database of experimental windage loss measurements that is not currently available in the open literature, as well as a new validated design tool/module to help future machinery designers evaluate windage losses in this class of machinery. The initial commercial application of the new windage loss reduction technology is expected to be a commercial direct-drive compressor currently under development by a large original equipment manufacturer. A range of other commercial applications, including other high speed compressors, and waste heat energy recovery turbine generators are also being considered. Opportunities to apply the technology to electrical starting and generating machinery of specific Air Force interest will also continue to be pursued.

* Information listed above is at the time of submission. *

Agency Micro-sites

SBA logo
Department of Agriculture logo
Department of Commerce logo
Department of Defense logo
Department of Education logo
Department of Energy logo
Department of Health and Human Services logo
Department of Homeland Security logo
Department of Transportation logo
Environmental Protection Agency logo
National Aeronautics and Space Administration logo
National Science Foundation logo
US Flag An Official Website of the United States Government